Computational Power Flow, Sample Exam

ECE 63XX
10/XX/2026

Name:

I, , commit to uphold the ideals of honor and integrity
by refusing to betray the trust bestowed upon me as a member of the Georgia Tech Community.

(Revised) Please read this information:

e This is a 48-hour take home exam.
e Please do not collaborate during your first revision of this exam. You are on your honor.
e C(Collaboration may be permitted for a second revision submission for partial credit.

e Use of generative Al is discouraged due to the nature of the material being creative; reflect
on the syllabus policy on use of Al

e You are responsible for the content of all your answers.
e Please show all your work.
e Please box or circle your final answers.

e This test has 5 problems that total up to 100 points.
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Exam wrapper (3 bonus points) (Revised)

Question I. (1 pts)

Reflect on your work in preparation for this course by answering the following questions:
1. Approximately how many hours did you spend studying for this exam?

2. Please indicate what percentage of your time was spent on the components of the
course:

Prepared course notes:

(a)
(b)
()

)

(d) Researching material on my own:

Lecture slides and handwritten notes:

Solving and resolving homework:

Question II. (1 pts)

Reflect on the topics you believed were your strengths and weaknesses going into this exam.
You don’t need to use every blank space.

1. Which topic(s) did you feel the most confident about?

(a)
(b)
(c)
2. What topic(s) did you feel the least confident about?
(a)
(b)
()

Question III. (1 pts)

Reflect on your interests in this course in preparation for your final project. In your opinion,
what was the most interesting part of this course thus far?
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Item 1: Matrix Methods for Power Flow Analysis (20pts)

Consider the following 3-node electric power network:

y
| — |

|

Figure 1: A 3-node electric power network

Question la. (10 pts)

Build and write the 3 x 3 nodal admittance matrixz Y for this network in terms of the
admittance symbols shown for the lines and shunts in Fig. 1.

Solution 1a.

Recall that the nodal admittance matrix is the graph Laplacian matrix with the line
admittances used to define the graph edge weights. Thus, the matrix Y takes the form

Y1+ D ks Yik —Yy12 —Y13
Y = —Y21 Y2 + D pro Yok —123 (1)
—Y31 —Y32 ys + Zk?sg Y3k
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Question 1b. (10 pts)

Derive the power flow equation s; : C" — C for node 1 in the network shown in Fig. 1,
which maps the voltages at all nodes in the network to the power injected at node 1. The
equation should only depend on the y;;’s and the v;’s.

Solution 1b.

Let v; = z; + jy; € C denote the voltage phasors at each node i € {1,2,3} and let
v = [v;]; € C? be the network state. Let y; € C3 be the i-th row of the admittance matrix
Y. Recall that the power flow equations are

s(v) = diag(v)Y,

where (-) denotes the complex conjugate. Hence, we can write this in elementwise matrix-
vector form for the 3-node network shown in Fig. 1 as

81 _Ul | —yl + Zk;&l Y1k —Y12 —Y13 U1
59 U2 —Y21 Y2 + Zk;&Q Yok —Y23 V2
53 i v | —Y31 —Y32 Y3+ Dk ¥sk| |3
-711 1T Z‘/lT
V2 Yy v
i vs| | y;

Now, we can see that the power flow equations s; for each node i € {1,2,3} are given as

si=wvy, v forall ie{1,2,3}.

Hence, the equation for node 1 is

T
S1 =011 v

= Y1+ Zy]k V1 — Y1202 — Y1303
k#1

v1((y1 + y12 + y13) v1 — Y1202 — Y13V3).
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Item 2: Recognize Power Flow Representations (20pts)

Please write in the spaces provided the number that corresponds to the approximation or
relaxation of the power flow equations

Question 2a. (5 pts)
Circle your answer: The branch flow model is more appropriate for
1. Single-phase radial distribution networks

2. Single-phase meshed transmission networks

Solution 2a.

The answer is radial (i.e., tree) distribution networks because the branch flow model
does not enforce consistency in the angle summations around cycles in the network (i.e.,
the summation of the angles around a cycle must be a multiple of 27 radians for true
solutions). Since transmission network models are typically meshed, the branch
flow model is a relaxation for transmission networks; in contrast, it is ezact for radial
distribution networks.

Question 2b. (5 pts)

Circle your answer: For multi-phase unbalanced radial distribution networks, the branch
flow model

1. Is a relaxation of the power flow equations
2. Is an approximation of the power flow equations

3. Is neither a relaxation nor approximation of the power flow equations

Solution 2b.

The answer is that the DistFlow equations are a relaxation of the power flow equations for
multi-phase unbalanced distribution networks, because unbalanced networks have implicit
cycles between phases; thus, the network cannot be modeled as a single-phase balanced
radial network. This is a requirement for the DistFlow equations to be exact; otherwise, it
is a relaxation.
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Question 2c. (5 pts)

Circle your answer: A node consumes 2 MVA with a leading power factor of 0.8. How
much reactive power is the load consuming?

1. 1.2 MVAr
2. -1.2 MVAr
3. 1.6 kVAr

4. -1.6 MVAr

Solution 2c.

The answer is 2, -1.2 MVAR. The injection is s = p + jq where |s| = 2MV A. We can
write

1—a?

P
q=sgn(q) - —
(074

where a € (0,1) is the power factor. Since the power factor is leading, sgn(q) = —1 and

p=(0.8)-(2x10% =1.6 x 10°, so

1—(0.8)2
0.8

g=— (1.6 x 10°) = —1.2 x 10° VAr = —1.2 MVAr.
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Question 2d. (5 pts)

For each of the following equations, write TRUE if the equation is either a relaxation or
approximation of the power flow equations, and FALSE if it is neither. The equations
assume an arbitrary n-node network.

1. p+jq = diag(v)Y v, where Y € C"*" p,q,€ R" and v € C".

2. v=1+ Rp+ Xq, where R, X €8, and p,q € R"

3. p= B0, where B €8", and p,0 € R"

4. fi =51 Yirvr

5. pi +iti = viy peq Yy VieN

0. pi = ‘U1| ZZ:l |Uk| (Gik COS(QZ' — Hk) + Bz’k sin(@i — Qk))

7. px = trc(H W), where Hy, := % (Y*ekeg + ekng) and W > 0.
1
2

8. pr = trc(HpW), where Hy, := (Y*eke;— + ekng) and rank(W) = 1.

P G -B| |lv|-1
-B -G 0

10. pir, = gir (Tir + Uin + |vi] = [og]) = bir (85 — 0x), where Uy, > (|vi| — |vg|)* and Ty, >
0; — 0x|? for all (i,k) € €

Solution 2d.

1. Relaxations: 7
2. Approximations: 2,3,9,10

3. Neither: 1,4,5,6,8
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Item 3: Predict Grid Conditions

Question 3a. (20 pts)

A solar photovoltaic device applies a DC voltage v in parallel across two loads with
parameters R; := 1€ and Ry := 2. Assume that you obtain random measurements from
the network of the form

leN(2571)7 f2NN(1171/4)7

where f1 is the current through R; and fs is the current through Ro. Derive the minimum
mean squared error (MMSE) unbiased estimator for v.

Solution 3a.

Let « = [v] be the DC voltage as the state. Applying the power flow equations, the
measurement, vector is

h(m): h/l(ac) _ ﬁ

ha(x) 20

The linearization of the measurement operator is

oh |G 1
H = — = =
ox 9f2 1
ov 2
The Gram matrix is
Tp-1 1 - 1
G=H'R H:{l 1/2} =2
-4 |1/2
The MMSE estimator is
1 1 - 25 25 + 22
F=GH'R (z—hz) =51 12] _ 22 o35
2 4| |11 2
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Item 4: Economic Power Dispatch

6+j0 p.u.
A

Figure 2: A 1-node network serving load s = 6 + jO p.u.

Consider a single node network shown in Fig. 2. The cost curves for each generator are given as

1
Caq = Bpg,a 0< Dga < 5 (23)
1
cp = gpg,b + 3pg.b 0 < pgp <5. (2b)
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Question 4a. (10 pts)

Determine the optimal generations pJ* and pg* that minimize the total operating cost.

Solution 4a.

We have that the total operating cost (objective function) of the program C : R? — R is
given as

13 I 3
C(p) = GPaat GPab T 3Pgb-
The incremental cost vector is
1,2
Tp a )\
c=V,C = ] 359, =
sPoy+3 A

Moreover, the power balance constraint is given as

Pg,a + Pgp = 6 — Pgb = 6 — Pg,a-

So, combining the above with the incremental cost vector ¢ yields

Rearranging, we have

1, 1

3Poa =30 —Psa)’+3 = Pa=(6-psa) +9 = phu =39 12pp0 + P

thus, we have

39 11
e pg7b:6——:—.

=39 = —12pg0 = Pga = 12 4

12
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Question 4b. (10 pts)

Determine the locational marginal price (LMP) of power served optimally at the node.

Solution 4b.
The LMP is given as

39\ 2
T5) =352=153,520/MWh

Question 4c. (10 pts)

Determine the total operating cost in $/hr.

Solution 4c.

The total operating cost is

1. 1.
C(p*) = ép;fa + ép;;‘b +3pt, = 17.4375 = $17,437.50/MWhr
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Item 5: Control grid operating conditions

Question 5a. (30 pts)

Consider a single-phase radial distribution network with n nodes. Assume that:
1. There are solar panels installed at every node with a maximum power output of A.
2. The LinDistFlow approximation accurately models the grid.
3. Reactive power injections are 0 throughout the grid (¢ = 0).

Derive an upper bound for maximum expected random voltage magnitude perturbation
from 1 anywhere in the grid, that depends only on the rows of the resistance matrix {r;},,
the number of nodes n, and the maximum solar panel output A.

Solution 5a.

Under the problem assumptions, the random voltage magnitude perturbations around 1
are given as
v —1= Rp,

where p is a random vector such that ||p|lcc < A almost surely. Consequently, it follows
that p is a sub-Gaussian random vector with parameter at most A/2; hence, the maximum
random voltage perturbations can be upper bounded as

e | mex o~ 1] Do~ 1))

i=1,..,n

(2)

2 (| Rpoc]

(3)

< IRl E [[pllo]

(4)
< ( max muQ) - (A/iog2n)
i=1,..,n
where step (1) is by definition of the o, norm, step (2) is by definition of the LinDistFlow
approximation of the power flow equations, step (3) is by the submultiplicative property of
any matrix p-norm, and step (4) is by defintion of the matrix oo norm and the concentration
of the maximum of sub-Gaussian random variables.

ALTERNATIVES:

1. Operator norm-based upper bound is also acceptable.
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