

ECE 4320: State Estimation

Daniel K. Molzahn, Samuel Talkington

March 26, 2025

Logistics

Agenda: next 2 weeks

• State estimation (x2)

Office hours w/ me

- Project, coding, support
- Research interest chats

This week: Thurs. 2pm;

Next week: TBD.

Source: xkcd

Recap

Last time:

- We introduced **unit commitment**–an extension of DC Optimal Power Flow (OPF) with **discrete** decision.
- We talked about how to solve Unit Commitment with the "branch-and-bound" tree.

Today:

- We'll talk about *state estimation*-bringing the world of statistics to power systems.
- Time permitting, we'll also talk about how to solve these problems computationally.

Overview

Introduction to State Estimation

Mathematical Formulation

Solution Methods

Linear approximation for state estimation and simple example

Introduction to State Estimation

What is State Estimation?

- Process of estimating the state variables (voltage phasors) of a power system using measurements.
- Essential for real-time monitoring, control, and operation of power systems.
- Objective: Obtain the best estimate of the state of the system given the available measurements.

Mathematical Formulation

System Model

$$\mathbf{x} = \begin{bmatrix} \theta_2 & \theta_3 & \dots & v_1 & v_2 & \dots \end{bmatrix}^\mathsf{T}$$

• Measurement function: h(x), a nonlinear mapping from states to measurement, consisting of power flows, injections, or bus voltages.

Mathematical formulation

Idea: Estimate x from noisy observations of h(x):

• Measurement vector $\mathbf{z} \in \mathbb{R}^m$:

$$z = h(x) +$$

ullet ϵ : Measurement noise. We'll model this as a standard Gaussian vector:

$$\epsilon \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I}).$$

additive noise model

rmal distribution PH.

ECE 4320: State Estimation

The measurement model

ECE 4320: State Estimation

Solution Methods

Least squares

- Define the *residuals* (estimation error) as: $z_i h_i(x)$.
- Least squares seeks to minimize the sum of the squared residuals:

$$\min_{\mathbf{x}} \sum_{i=1}^{m} (z_i - h_i(\mathbf{x}))^2.$$

of my willings the identess

(100)

measurement functions

*LASSO

[mim]

Motivation for Weighted Least Squares (WLS) Estimation

- What if we trust some measurements more than others?
- **Example:** What if the measurement noise variance is different at each bus?

• The measurements are still: $\mathbf{z} = \mathbf{h}(\mathbf{x}) + \epsilon$.

Weighted Least Squares

Pair and share:

What should we set the weights w_i to be?

WLS optimization problem

Solving WLS

- How to solve?: Iterative methods (e.g., Gauss-Newton, Newton-Raphson).
- Convergence depends on good initial estimates.
- Solve by setting the derivatives of C(x) = 0:

X11 , Xn

Derivation of the Newton-Raphson solution

$$C(x) = \sum_{i=1}^{n} \frac{(z_i - hcx)^2}{\sigma_i^2}$$

$$\frac{\partial C}{\partial x_i} = \sum_{i=1}^{n} 2 \frac{(z_i - hcx)}{\sigma_i^2} \left(-\frac{\partial h}{\partial x_i}(x)\right)$$

$$\frac{\partial \mathcal{C}}{\partial x_{i}} = \sum_{i=1}^{n} 2 \frac{(z_{i} - h(x))}{\sigma_{i}^{2}} \left(-\frac{\partial h}{\partial x_{i}}(x) \right) = 0$$

$$\frac{\partial \mathcal{C}}{\partial x_{i}} = \sum_{i=1}^{n} 2 \frac{(z_{i} - h(x))}{\sigma_{i}^{2}} \left(-\frac{\partial h}{\partial x_{i}}(x) \right) = 0$$

$$\frac{\partial \mathcal{L}}{\partial x} = \frac{\partial \mathcal{L}}{\partial x} = \frac{\partial$$

Gain matrix

$$g(x) = -H(x)^{T} R^{-1} (z - h(x))$$

$$H(x) = \begin{bmatrix} \frac{\partial h_{1}(x)}{\partial x_{1}} & \frac{\partial h_{1}(x)}{\partial x_{1}} \\ \frac{\partial h_{1}(x)}{\partial x_{1}} & \frac{\partial h_{1}(x)}{\partial x_{1}} \end{bmatrix}$$

$$\frac{\partial h_{1}(x)}{\partial x_{1}} = \frac{\partial h_{1}(x)}{\partial x_{1}} + \frac{\partial h_{1}(x)}{\partial x_{1}} + \frac{\partial h_{1}(x)}{\partial x_{1}} = \frac{\partial h_{1}(x)}{\partial x_{1}} + \frac{\partial h_{1}(x)}{\partial x_{1}$$

Gain matrix -> Jucobian of the gradient. WILX

$$G(x) = \begin{bmatrix} \frac{\partial g}{\partial x}(x) & -\frac{\partial g}{\partial x}(x) \\ \frac{\partial g}{\partial x}(x) & -\frac{\partial g}{\partial x}(x) \end{bmatrix} f: \mathbb{R}^n \to \mathbb{R}^m, \text{ if } g \in \mathbb{R}^{m \times n}$$

$$\begin{array}{c} \frac{\partial g}{\partial x}(x) & -\frac{\partial g}{\partial x}(x) \\ \frac{\partial g}{\partial x}(x) & -\frac{\partial g}{\partial x}(x) \end{bmatrix} f: \mathbb{R}^n \to \mathbb{R}^m, \text{ if } g \in \mathbb{R}^{m \times n}$$

$$\begin{array}{c} \frac{\partial g}{\partial x}(x) & -\frac{\partial g}{\partial x}(x) \\ \frac{\partial g}{\partial x}(x) & -\frac{\partial g}{\partial x}(x) \end{bmatrix} f: \mathbb{R}^n \to \mathbb{R}^m, \text{ if } g \in \mathbb{R}^m \times n$$

$$\begin{array}{c} \frac{\partial g}{\partial x}(x) & -\frac{\partial g}{\partial x}(x) \\ \frac{\partial g}{\partial x}(x) & -\frac{\partial g}{\partial$$

ECE 4320: State Estimation

Gain matrix

nute:

$$G(\hat{x}^{(k)}) \propto H(\hat{x}^{(k)})^T R^{-1} H(\hat{x}^{(k)})$$
Approximate $H(\hat{x}^{(k)})$ as nearly constant
$$H(x+\Delta x) \lesssim H(x)$$

Linear approximation for state estimation and simple example

Linear State Estimation (DC Model)

- Simplification of the AC model by linearizing the measurement model.
- The measurement function becomes linear:

$$z = Hx + \epsilon$$

3-bus system setup -> Use the DC power flow approx.

16/17

3-bus system setup

$$Z = \begin{bmatrix} P_{12} \\ P_{23} \\ \Theta_2 \end{bmatrix} = H \times + E$$

$$= \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} + E$$

$$= \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

ECE 4320: State Estimation

3-bus system setup

Next time

Next time

- Observability analysis
- Pseudo-measurements
- New extensions of state estimation