
ECE 4320, Spring 2025
Daniel Molzahn

Homework 5
Due: April 22

4 problems, 100 points possible

1 State Estimation

This problem tasks you with formulating (but not solving) the equations associated with a state
estimation problem for the two-bus system shown below in Fig. 1.

Figure 1: Two bus system

This system has a generator at bus 1 and a load at bus 2. The line is modeled with a series
impedance of j0.10 per unit. Bus 1 sets the angle reference so θ1 = 0◦. (Note: the phase angle
reference is not a measurement, so θ1 is modeled as an exact value in the formulation below.) For
this system, the state vector x contains the voltage angle at bus 2 (θ2), the voltage magnitude at
bus 1 (V1), and the voltage magnitude at bus 2 (V2):

x =

θ2
V1
V2


Table 1: One sample of measurements of the system

Measurement Measured Value (per unit) Standard Deviation (per unit)
Voltage magnitude at bus 1, V1 V1 = 1.001 σ1 = 0.01
Voltage magnitude at bus 2, V2 V2 = 0.969 σ2 = 0.01
Active power flow on the line, P12 P12 = 1.033 σ3 = 0.03
Reactive power flow on the line, Q12 Q12 = 0.464 σ4 = 0.03

Problem 1 (25pts)
Write the (weighted) least-squares optimization formulation for the state estimation problem
that uses the four specified measurements from the table to compute an estimate for the system
state x. Note: You do not need to solve this formulation.

1. Write down the measurement vector z as described in Table 1 and construct the measure-
ment functions h(x) =

[
h1(x) . . . h4(x)

]⊤. [15pts]

2. Write the objective function C(x) for the least squares problem. [10pts]
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SOLUTION:
First consolidate the measurements into a vector z:

z =


z1
z2
z3
z4

 =


1.001
0.969
1.033
0.464

 .

We then write the measurement function h(x) =
[
h1(x) . . . h4(x)

]⊤. The first two measurements
h1(x) are the same as the states V1 and V2 themselves. The second two measurements are the active
and reactive power flows across the line. We can derive these using Ohm’s law, or equivalently via
the power flow equations (look back at our notes on the power flow equations!). Using Ohm’s law
the current through the line is I12 =

(V1∠0◦−V2∠θ◦2 )
j0.10 = −j10 (V1∠0◦ − V2∠θ2). Thus, the active power

flow P12 is

P12 = Re (V1∠0◦ · I∗12)

= Re
(

j10 · V2
1 ∠0◦ − j10 · V1V2 cos(θ2)− 10 · V1V2 sin(θ2)

)
= −10 · V1V2 sin(θ2).

The reactive power flow Q12 is:

Q12 = Im (V1∠0◦ · I∗12)

= Im
(

j10 · V2
1 ∠0◦ − j10 · V1V2 cos(θ2)− 10 · V1V2 sin(θ2)

)
= Im

(
j10 · V2

1 − j10 · V1V2 cos(θ2)− 10 · V1V2 sin(θ2)
)

= 10 · V2
1 − 10 · V1V2 cos(θ2)

= 10 · V1 (V1 − V2 cos(θ2)) .

Now, we can write the WLS problem as

min
x

4

∑
i=1

(hi(x)− zi)
2

σ2
i︸ ︷︷ ︸

=C(x)

,

where the function C(x) is given as

C(x) =
4

∑
i=1

(hi(x)− zi)
2

σ2
i

=
1
σ2

1
(h1(x)− z1)

2 + . . . +
1
σ2

4
(h4(x)− z4)

2

=
1
σ2

1
(V1 − z1)

2 +
1
σ2

2
(V2 − z2)

2 +
1
σ2

3
(P12 − z3)

2 +
1
σ2

4
(Q12 − z4)

2

=
1
σ2

1
(V1 − z1)

2 +
1
σ2

2
(V2 − z2)

2 +
1
σ2

3
(−10 · V1V2 sin(θ2)− z3)

2 +
1
σ2

4

(
10 · V2

1 − 10 · V1V2 cos(θ2)− z4
)2

.
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2 Matrix Methods for Three-Phase Fault Analysis

Note: This problem had some typos in the admittance matrix. We first write the problem and
solution as written and then the problem that I intended to have you solve and the associated
solution. Sorry for the confusion on this!

Consider the admittance matrix shown below, with values given in per unit.

Y =


0 + j22 0 − j8 0 − j4 0 − j10
0 − j8 0 + j8 0 + j0 0 + j0
0 − j4 0 + j0 0 + j9.5 0 − j5.5
0 − j10 0 + j0 0 − j5.5 1 − j12.5



Problem 2 (25pts)
From the admittance matrix Y , complete the following tasks:

1. Draw the one-line diagram for the power system that has the admittance matrix Y shown
above. On your one-line diagram, label all impedances in per-unit representation. [6pts]

2. Compute the impedance matrix Z = Y−1 using MATLAB, or your computation method
of choice. [3pts]

3. Suppose that a bolted three-phase fault occurs at bus 3. Neglect all prefault current and as-
sume a flat prefault voltage of 1∠0◦ per unit. Compute the following using the impedance
matrix method:

(a) The current into the fault in per unit. [8pts]

(b) The voltages during the fault at buses 1, 2, and 4. [8pts]

4. [BONUS: +3pts] Explain how to make it impossible to compute Z (i.e., make Y singular)
by changing exactly 1 entry of Y . Explain what this means physically in 1 or 2 sentences.
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SOLUTION:

1. Any one-line diagram that correctly shows the connectivity between all buses and labels the
impedances on the lines and the shunt on bus 4 is okay.

2. We have that

Z =


0.00127 − j0.0455 0.00127 − j0.0455 0.00127 + j0.00148 0.00127 + j0.0357
0.00127 − j0.0455 0.00127 − j0.1705 0.00127 + j0.00148 0.00127 + j0.0357
0.00127 + j0.00148 0.00127 + j0.00148 0.00127 − j0.0840 0.00127 + j0.0357
0.00127 + j0.0357 0.00127 + j0.0357 0.00127 + j0.0357 0.00127 + j0.0357

 ,

where we rounded to 3 significant figures.

3. BONUS: Note that the entry Y44 is not the negative of the sum of the off-diagonal elements:

− ∑
j ̸=4

Y4j = − (0 − j10 + 0 − j5.5) = 0 + j15.5 ̸= Y44 = 1 − j12.5;

this means that there must be a shunt impedance to ground. To compute this, recall that

Y ij = −yij ∀i, j = 1, . . . , N, i ̸= j.

And recall that the entry Y4,4 is given as

Y4,4 = Ysh,4 + ∑
j ̸=4

y4j = Ysh,4 − ∑
j ̸=4

Y4,j

Thus, we can compute the shunt admittance as:

Ysh,4 = Y4,4 + ∑
j ̸=4

Y4j = (1 − j12.5) + (0 − j10) + (0 − j5.5) = 1 − j28 p.u.

If we remove the shunt impedance and set

Ynew
4,4 = Y4,4 − Ysh,4 = 0 + j15 p.u.,

there is no longer a ground in the circuit, which consequently makes the admittance matrix
singular; namely,

null(Y) = span(1),

where 1 is a vector of all ones.

Below are the fault solutions, applying the equations from lecture.

1. The current into the fault in per unit is given as:

I f =
1∠0◦

Z3,3
=

1∠0◦

0.00127 − j0.0840
= 0.1805 + j11.9035 = 11.905∠89.131◦
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2. Voltages during the fault are given as

V1 =

(
1 − 0.00127 + j0.00148

0.00127 − j0.0840

)
= 1.0174 − j0.0153 = 1.018∠− 0.869◦ (1)

V2 =

(
1 − 0.00127 + j0.00148

0.00127 − j0.0840

)
= 1.0174 − j0.01543 = 1.018∠− 0.869◦ (2)

V4 =

(
1 − 0.00127 + j0.0357

0.00127 − j0.0840

)
= 1.424 − j0.0216 = 1.425∠− 0.869◦. (3)

The problem I had intended for you to solve was to compute the fault currents for the system
with the following admittance matrix:

Y =


0 − j22 0 + j8 0 + j4 0 + j10
0 + j8 0 − j8 0 + j0 0 + j0
0 + j4 0 + j0 0 − j9.5 0 + j5.5
0 + j10 0 + j0 0 + j5.5 1 − j12.5


This admittance matrix corresponds to a system with lines between the following buses:

• Bus 1 and bus 2 with impedance Z12 = 1/(−j8) = j0.125.

• Bus 1 and bus 3 with impedance Z13 = 1/(−j4) = j0.25.

• Bus 1 and bus 4 with impedance Z14 = 1/(−j10) = j0.10.

• Bus 3 and bus 4 with impedance Z34 = 1/(−j4) = j0.1818.

There is a shunt impedance at bus 4 (observe that the fourth column does not sum to zero). The
admittance connected to bus 4 is (1 − j12)− (−j10 − j5.5) = 1 + j3.5. The associated impedance is
thus Zsh,4 = 1/(1 + j16.5) = 0.0755 − j0.2642.

Taking the inverse of this matrix yields the impedance matrix Z:

Z =


0.1 − 0.2188j 0.1 − 0.2188j 0.1 − 0.2658j 0.1 − 0.3j
0.1 − 0.2188j 0.1 − 0.0938j 0.1 − 0.2658j 0.1 − 0.3j
0.1 − 0.2658j 0.1 − 0.2658j 0.1 − 0.1803j 0.1 − 0.3j

0.1 − 0.3j 0.1 − 0.3j 0.1 − 0.3j 0.1 − 0.3j


The fault current for a three-phase fault at bus 3 is I f = 1∠0◦/Z33 = 1

0.1−j0.1803 = 2.3517 +

j4.2410 = 4.8494∠61.0◦ per unit.
The voltages at the remaining buses i during the fault at bus k are given by:

Vi = 1∠0◦ − Zik

Zkk
(1∠0◦)
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We therefore have:

V1 = 1∠0◦ − 0.1000 − j0.2658
0.1000 − j0.1803

= −0.3625 + j0.2010 = 0.4145∠151◦

V2 = 1∠0◦ − 0.1000 − j0.2658
0.1000 − j0.1803

= −0.3625 + j0.2010 = 0.4145∠151◦

V4 = 1∠0◦ − 0.1000 − j0.3000
0.1000 − j0.1803

= −0.5075 + j0.2814 = 0.5803∠151◦
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3 Analysis of Unbalanced Faults

Figure 2: The Problem 3 system

Consider the system shown in Fig. 2. Assume that the voltage source provides balanced
positive sequence voltage phasors, with the phase a voltage phasor Vs = 1∠0◦ per unit. Also
assume that the impedances are equal to Z = 0 + j1 per unit. Observe that the wye-connected
voltage source is grounded through an impedance Z.

Problem 3 (25pts)
For the system shown in Fig. 2, compute each of the following fault types. Assume that each of
the faults is bolted (that is, zero fault impedance to ground).

1. Compute the fault current Ia′ f for a bolted fault from a′ to ground (single line to ground
fault on phase a). [10pts]

2. Compute the fault current flowing from b′ to ground (Ib′ f ) for a bolted fault from b′ and
c′ to ground (double line to ground fault on phases b and c). [10pts]

3. Compute the current flowing from phase a to ground during a three-line to ground bolted
fault at points a′, b′, and c′. [5pts]
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Summary of the overall approach:

1. Construct the positive, negative, and zero sequence circuits

2. Connect the sequence circuits at the point of the fault accoridng to the fault type:

(a) Single line to ground: Connect positive, negative, and zero sequence circuits in series.

(b) Double line to ground: Connect positive, negative, and zero sequence circuits in parallel.

(c) Line to line: Connect positive and negative sequence circuits in parallel, zero sequence
circuit is disconnected.

3. Find the phase a symmetrical component values. (”Solve the circuit”) for I+a f , I−a f , I0
a f , and

V+
a , V−

a , and V0
a .

4. Convert back to phase coordinates with the transformationIa f
Ib f
Ic f

 =

1 1 1
1 α2 α
1 α α2


I0

a f
I+a f
I−a f

 .

This is analagous to a Fourier transform. In the first step, we have done the up-front work of
creating a much simpler circuit. After solving this simpler circuit in this coordinate system, we
have to “pay the price” of converting back by solving a linear system.
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SOLUTION: We first begin by forming the sequence networks, shown in Fig. 3.

Figure 3: The sequence networks for problem 3

1. Part 1—Single-line to ground fault at point a′: We connect the sequence networks in series at
point a′, and simplify, as shown in Fig. 4.

Figure 4: Sequence networks in series at point a′ and the simplified circuit

Next, using the simplified circuit in Fig. 4, we obtain the generator current as:

I+G =
1∠0◦

z +
( 4

3 z// (4.5714) z
) =

1∠0◦

z (2.0323)
= −j0.4921;
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thus, we can now solve for I f /3 using a current divider:

I f

3
= I+G ·

(
4
3 z

4
3 z + 4.5714z

)
= −j0.1111.

To wrap up,
I f = −j0.3333 = 0.3333∠− 90◦ p.u.

2. Part 2—Double-line to ground fault: We connect the sequence networks in parallel at point a′;
then, simplify the circuit to yield the result in Fig. 5.

Figure 5: Sequence representation of the double line to ground fault and the simplified form

Next, we solve for I+a f , I−a f , and I0
a f . To do this, we first need the positive sequence generator

current:

I+G =
1∠0◦

z +
( 4

3 z//0.5714z//4z
) =

1∠0◦

j1.3636
= −j0.733.

Thus,
V+

a′ = 1∠0◦ − I+G · z = 0.2667.

Consequently, the positive, negative, and zero-sequence fault currents are given as

I+a′ f = I+G −
V+

a′

4z/3
= −j0.7333 − 0.2667

j4/3
= −j0.5333

I−a′ f =
−V+

a′

j0.5714
=

−0.2667
j0.5714

= j0.4667

I0
a′ f =

−V+
a′

4z
=

−0.2667
j4

= j0.0667.
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To wrap up, we need to perform the matrix-vector multiplicationIa′ f
Ib′ f
Ic′ f

 =

1 1 1
1 α2 α
1 α α2


I0

a′ f
I+a′ f
I−a′ f

 =

1 1 1
1 α2 α
1 α α2

 j0.0667
−j0.5333
j0.4667

 ,

which, after plugging into a calculator, yields:Ia′ f
Ib′ f
Ic′ f

 =

 0.0
−0.8660 + j0.1000
0.8660 + j0.1000

 =

 0
0.8718∠173.4◦

0.8718∠6.6◦

 p.u.

3. Three-line-to-ground fault: In this fault situation, the system is balanced and we can therefore
write the single-phase equivalent circuit shown in Fig. 6.

Figure 6: Three-line-to-ground fault single-phase equivalent circuit

Consequently, from Ohm’s law, we have

Ia′ f =
1∠0◦

z
=

1∠0◦

j1
,

Thus,
Ia′ f = −j = 1∠− 90◦ p.u.
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4 Forming positive- negative-, and zero-sequence circuits from a one-
line diagram

Figure 7: One-line diagram for the Problem 4 system.

Problem 4 (25pts)
Consider the one-line diagram shown in Fig. 7. The points P, Q, R, S, T, U, V, W label various
points in this system. The positive-, negative-, and zero-sequence reactances for the generators
are X+

g , X−
g , and X0

g. Likewise, the transformers have positive, negative, and zero-sequence
reances of X+

T , X−
T , and X0

T, and the transmission lines (i.e., the lines connecting the points
S → U and T → U) have positive-, negative-, and zero-sequence reactances of X+

l , X−
l , and

X0
l .

Draw the positive-sequence, negative-sequence, and zero-sequence networks for the system
in the one-line diagram. Label where the points P, Q, R, S, T, U, V, W, shown in Fig. 7, are
equivalently located within your sequence networks.

Hints:

• Note that the wye connection in the the transformer between points Q and S is not grounded.

• The generators G1 and G2 have a grounded wye connection, and G3 is an ungrounded wye.

• Be sure to include the appropriate phase shifts for the transformers as needed.
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Sequence models for impedances

Let’s recall the sequence representation of circuit components.

1. Delta-connected impedances: For a simple (delta-connected) impedance structure, we can
write  I0

a
I+a
I−a

 =
1
3

1 1 1
1 α α2

1 α2 α

Ia
Ib
Ic

 .

Thus, we can write the zero-sequence current injection as

I0
a =

1
3
(Ia + Ib + Ic) = 0.

Physically, this means that delta-connected impedances are open circuits for the zero-sequence
circuit. This also leads us to a nice intuition that delta connections “block” zero-sequence
currents.

In contrast, the positive and negative sequence impedances for delta-connected loads are just
like what we saw at the beginning of the semester–the positive sequence transformation of a
delta-connected impedance is Z∆/3 with a delta-to-wye conversion; the same holds for the
negative sequence.

2. Wye-connected impedances: We’re familiar with these. The positive and negative sequence
circuit maintains the same phase-coordinate impedance ZY. For the zero-sequence circuit, the
impedance becomes Zy + 3Zg. Why do we have this? By KCL:

Va = Zy I0
a + Zg

(
I0
a + I0

b + I0
c
)
= Zy I0

a + 3Zg I0
a = I0

a
(
Zy + 3Zg

)
Sequence models for generators

1. Generators only produce positive sequence voltage in practice. It is possible for this general-
ization to not hold, but power engineers work very hard to make sure this doesn’t happen.

2. In practice as a power system engineer, you will encounter specified values for the positive,
negative, and zero-sequence reactances Z+ ≈ Z0 ≈ jX0

d; zero-sequence impedance Z0 usually
smaller.

3. Specified value for the grounding impedance Zg.

SOLUTION:

1. The positive sequence circuit is given as shown in Fig. 8.

2. The negative sequence circuit is given as shown in Fig. 9.

3. The zero-sequence circuit is given as shown in Fig. 10.
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Figure 8: The positive sequence representation

Figure 9: The negative sequence representation

Figure 10: The zero sequence representation
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