

ECE 2020 Circuit Timing and Number Systems

Instructor: Samuel Talkington

September 24, 2024

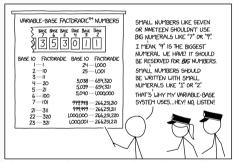
Logistics

- Now available:
 - HW1 revision opportunity: Due tonight, September 24th, 11:59pm.
 - Lab report: Due tonight, September 24th, 11:59pm.
- Exam 1:
 - Excellent performance, around half the class earned full points.
 - Grades released later this week.
- Upcoming:
 - Midterm survey: complete for +1 bonus point on your participation grade.
 - HW3: Released this week, due in \approx 2 weeks.

Agenda

Agenda: next 2 weeks

- Circuit timing
- Number systems
- Encoders/decoders
- Multiplexers
- Adders and subtractors



FACTORIAL NUMBERS ARE THE NUMBER SYSTEM THAT SOUNDS MOST LIKE A PRANK BY SOMEONE WHO'S ABOUT TO BE ESCORTED OUT OF THE MATH DEPARTMENT BY SECURITY.

Source: xkcd

Circuit timing

Sources of delays

- Until now, we have assumed that all circuits *output* 1 *or* 0 *instantaneously*.
- However, in real life, it takes time for CMOS circuits to switch from $0 \rightarrow 1$ or $1 \rightarrow 0$.
- Transistors (made of semiconductors) need time to switch from being "conductor-like" to "insulator-like".

Timing hazards

Numbers: How do they work?

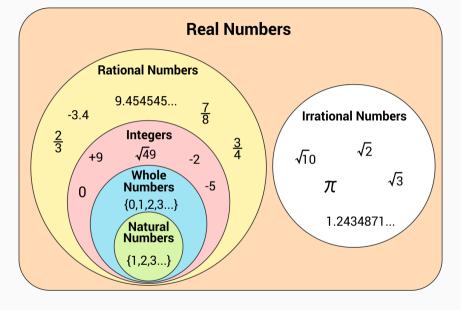


Figure 1: The subsets of the real numbers

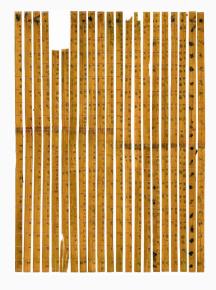


Figure 2: Oldest known base-10 multiplication table, China, c. 305 BC

Figure 3: Evolution of Hindu-Arabic numerials, starting with Edicts of Ashoka, c. 250 BC

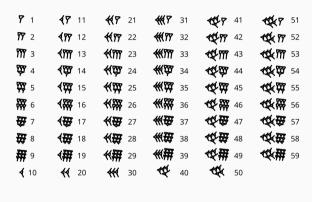


Figure 4: Babylonian cuneiform numerals, c. 2000 BC

The Babylonian cuneiform numerals, c. 2000 BC, were the first positional number system; shockingly, they were base-60, or sexagesimal. (???)

Bottom line

How we represent numbers is a *choice of human definition*.

Classroom discussion

There's an infinite number of real numbers, ("uncountably" infinite), and an infinite number of natural numbers, ("countably" infinite). Yet, we represent everything in terms of *just 10* of the natural numbers: 0,1,...,9.

Think about it for a second:

- How can we store numbers in computers?
- What kind of numbers would fit well into digital logic design?

Positional number systems

Positional number systems i

Question: How exactly do we represent a number?

Answer: We have to agree on the total number of **unique**, or **base** numbers to build our numbers from; the number of such unique numbers is called the *radix*.

usual digits =
$$\underbrace{\{0,1,2,...,9\}}_{\text{#digits=b,}}$$

The total number of unique digits in a number system, b, is called the radix.

Positional number systems ii

How? Positional numbers work by exponentiating the radix, multiplying the value of its place, and summing all of these together.

Example:

$$(241)_{10} = (2 \times 10^2) + (4 \times 10^1) + (1 \times 10^0)$$

We can make this more general!

Positional number systems iii

Definition: Base-b number system

A base-b number system with radix b > 1 represents any number $x \in \mathbb{R}$ as a string of digits a_i in n "places" i = 0, 1, ..., n-1, where each a_i is one of b possible digits in a digit set \mathcal{D} :

$$a_i \in \mathcal{D} = \{d_1, d_2, \dots, d_b\}$$
.

Any real number x can be represented in a base-b system as the following sum:

$$x = (a_{n-1}a_{n-2} \dots a_1a_0)_b = \sum_{i=0}^{n-1} a_i \times b^i.$$
 (1)

Base-10 number system

Base-10 numbers are the numbers we all know and love.

Examples:

$$\bullet \underbrace{3}_{=a_0} = 3 \times 10^0$$

$$\bullet \ \ \underbrace{53}_{a_1 a_0} = 5 \times 10^1 + 3 \times 10^0$$

•
$$\underbrace{125}_{=a_2 a_1 a_0} = \sum_{i=0}^{2} a_i \times 10^i = a_2 \times 10^2 + a_1 \times 10^1 + a_0 \times 10^0$$

Base-2 (Binary) number system

Base-2 (a.k.a. binary) numbers are the numbers we are all (starting) to know and love.

Examples:

•
$$\underbrace{10}_{a_1a_0} = 1 \times 2^1 + 0 \times 2^0 = (2)_{10}$$

•
$$\underbrace{110}_{a_2 a_1 a_0} = 1 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 = (6)_{10}$$

•
$$\underbrace{11010}_{a_4 a_3 a_2 a_1 a_0} = \sum_{i=0}^3 a_i \times 2^i = 2^4 + 2^3 + 0 + 2^1 + 0 = (26)_{10}$$

Positional number systems vi

Base-16 (Hexadecimal) number system

In base-16 or hexadecimal numbers, the set of base digits are:

$$\mathcal{D} = \{0, 1, 2, ..., 9, A, B, C, D, E, F\},$$

where:

$$(A)_{10}=10$$
, $(B)_{10}=11$, $(C)_{10}=12$,

$$(A)_{10} = 10,$$
 $(B)_{10} = 11,$ $(C)_{10} = 12,$ $(D)_{10} = 13,$ $(E)_{10} = 14,$ $(F)_{10} = 15.$

Why care about non-base-10?

- base-2 (binary): Digital logic, all of computing instruction are converted to this.
- base-8: 3-bit information (useful in analysis, prototyping)
- base-16: 4-bit information (tons of computer stuff)
 - 32-bit IP addresses are 8 digits
 - 32-bit CPU instructions are 8 digits
- base-60: Deciphering ancient Babylonian Cuneiform tablets (essential)

Converting between number

systems

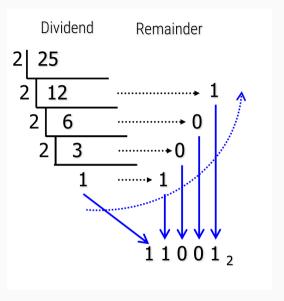


Figure 5: General procedure for converting (25)₁₀ to binary.

Converting between number systems i

To **convert** a base-*b* number to binary (base-2), you can follow these general concepts:

- Convert the number to base-10 using the appropriate number system.
- Divide the decimal number by 2.
- Note the remainder.
- Repeat the previous 2 steps for the quantient till the quotient is zero.
- Write the remainders in reverse order.

Converting between number systems ii

Example: converting a hexadecimal number to binary

How to convert this hexadecimal number to binary?

$$(4A)_{16}=(?)_2.$$

Solution: For the case of hex—binary, you can individually convert each digit into a 4-bit binary digit.

$$(2A)_{16} = (42)_{10} = \underbrace{0010}_{=(4)_{10}} \underbrace{1010}_{(10)_{10}}$$

Examples i

Example

Convert:

$$(BEAD)_{16} = (?)_2$$

Answer:

 $(BEAD)_{16} = (1011111010101101)_2$

ECE 2020 Circuit Timing and Number Systems

Examples ii

Example

Convert:

 $(10.1011001011)_2 = (?)_{16}$

Answer:

 $(10.1011001011)_2 = (2.B2C)_{16}$

Note the trailing zeros

ECE 2020 Circuit Timing and Number Systems

Fractional number representations

Fixed-point fractional representation i

Consider the number 5.75 in base-10:

Equivalently, in binary, 5.75 = 101.11:

Fixed-point fractional representation ii

The reason for this is because:

$$(5)_{10}=(101)_2,$$

and

$$(0.75)_{10} = (0.5)_{10} + (0.25)_{10}$$

= $1 \times 2^{-1} + 1 \times 2^{-2}$

We can be put this in a general form:

Fixed-point fractional representation iii

Fractional number systems

A base b fractional number D with n whole number digits $D_{n-1}, D_{n-2}, \dots, D_0$ and r fractional digits $D_{-1}, D_{-2}, \dots, D_{-r}$, can be written as

$$D = \left(\underbrace{D_{n-1}D_{n-2}\dots D_1D_0}_{\text{n whole digits}} \cdot \underbrace{D_{-1}D_{-2}\dots D_{-r}}_{\text{r fractional digits}}\right)_b,$$

and can be equivalently represented as

$$D = \sum_{i=-r}^{n-1} D_i b$$

Examples i

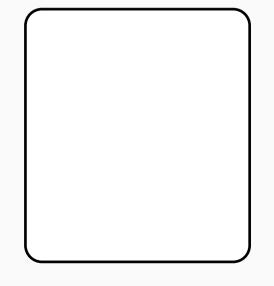
Example

Convert:

 $(100.101)_2 = (?)_{10}$

Answer:

 $(100.101)_2 = (4.625)_{10}$



Examples ii

Example

Convert:

$$(3A6.C)_{16} = (?)_2$$

Answer:

$$(3A6.C)_{16} = (001110100110.1100)_2$$

Note the **trailing and leading** zeros above. Equivalently:

 $(3A6.C)_{16} = (1110100110.11)_2$

IMPORTANT: Trailing and Leading Zeros Rule

The rule for where to add 0's is *incredibly important* for correct conversions. For example, consider the conversion: $(22)_{10} = (10110)_2$. If we incorrectly add trailing zeros to convert this to hex, we would get

$$(10110000)_2 = (B0)_{16} = (176)_{10} \neq (22)_{10}$$
 (false!)

The correct way to convert this to hex is adding leading zeros to get

$$(00010110)_2 = (16)_{16} = (22)_{10}$$
 (true!)

IMPORTANT: Trailing and Leading Zeros Rule

Another example: $(2.5)_{10} = (10.1)_2$. If we want to convert this to hexadecimal, the correct way adding **leading** and trailing zeros around the decimal point:

$$(2.5)_{10} = (0010.1000)_2 = (1 \times 2^1) + (1 \times 2^{-1}) = (2.5)_{10} = (2.8)_{16}.$$

If we add trailing 0's to the right both before and after the decimal, we'll incorrectly get

$$(1000.1000)_2 = (8.8)_{16} = (8.5)_{10} \neq (2.5)_{10}$$
 (false!)

Furthermore, if we add leading zeros on both sides, we'll get

$$(0010.0001)_2 = (2.1)_{16} = (2.0625)_{10} \neq (2.5)_{10}$$
 (false!),

Puzzle

Next time

Next time:

- 1 Conversion between arbitrary number systems
- 2 Negative binaries, signed magnitude, 2s complement
- 3 Building blocks

Participation puzzle

Perform these conversions:

$$(11001)_2 = (?)_{10}$$

 $(B4)_{16} = (?)_{10}$

Due by 11:59pm tonight, password: radix

Bonus puzzles (to be discussed Thursday)

Perform these conversions:

$$(3A6.C)_{16} = (?)_2 = (?)_8 = (?)_{10}$$

 $(1010011100)_2 = (?)_{16} = (?)_8 = (?)_{10}$