ECE 2020: Karnaugh Maps and CMOS review Instructor: Samuel Talkington September 10, 2024 # Logistics - Now available: - HW1: Grades and solutions released. - HW 2—due September 17th with optional 2 day extension to Thursday, September 19th. - Updated course schedule—more on this later. - Pre-lab worksheet—due September 12th before class. - Schedule for the next two weeks: - First lab next Thursday, September 12th, in-class. - First exam, September 19th, in-class. # Agenda Source: r/minecraft # Agenda - Today, September 10: - HW 1 review - Course schedule update - CMOS logic design review - Karnaugh maps and SoP forms - Thursday, September 12: Lab—due Fri. Sep 20th, 11:59pm. - Tuesday, September 17: - (Time permitting): Timing Diagrams (approx. half lecture) - Exam review (half lecture, and after class). # **Exam schedule** - 1 Exam 1: Thursday, September 19, 2024: 60 Minutes. - 2 Exam 2: Thursday, October 10, 2024: 60 Minutes. - 3 Exam 3: Thursday, November 07, 2024: 60 Minutes. - 4 Optional redemption exam: Tuesday, November 26, 2024: 60 Minutes. Problems will have short solutions. The exam will be designed for 60 minutes. # What to expect on the first exam The exam will take 60 minutes and will be similar to homework assignments, but more brief and conceptual. There will be 3-4 problems - 1 Boolean algebra and logic function simplification - 2 Logic gates, operations, and circuits. - 3 CMOS circuits A single page of notes is permitted. 60%-70% HW1 material, 30%-40% HW2 material. # Survey feedback: Redemption **Confession:** I <u>sucked (still suck)</u> at exams throughout my engineering education. Based on your survey feedback, we're going to try something new this semester: - Fourth exam is an optional redemption exam. - Lowest homework dropped at end of the semester. # HW1 review #### **HW1 Problem 1** # Example: How to make HW1 Problem 1 in real life with CMOS ECE 2020: Karnaugh Maps and CMOS review #### HW1 Problem 2 $$F = AB + C(A+B) + CA + B$$ $$= B + C(A+B) + CA$$ $$= B + CA + CB$$ $$= B + CA + CA$$ $$= B + CA + CA$$ #### **HW1 Problem 3** # CMOS Review ### Implementing a NOR gate Suppose you want to implement the NOR gate in CMOS. How do we do this? ECE 2020: Karnaugh Maps and CMOS review ### Implementing a generic logic function Implement the following logic function in CMOS: $$F = A \cdot \overline{\left(\overline{B} \cdot C\right)}$$ Inversion applied to the input! # Participation puzzle: implement a CMOS NAND gate #### Participation puzzle Consider our friend, the NAND gate. - Derive pull-up and pull-down expressions for a NAND gate. - Construct a CMOS schematic for a NAND gate. - Indicate the locations of the pull-up and pull-down networks. ### Logic gate and truth table The NAND gate | Α | В | $Q=\overline{A\cdot B}$ | |---|---|-------------------------| | 0 | 0 | 1 | | 0 | 1 | 1 | | 1 | 0 | 1 | | 1 | 1 | 0 | ECE 2020: Karnaugh Maps and CMOS review Q= A.B = A+B B= A-B 000 Karnaugh maps #### Kmap history #### You, c. 1950s: "I spent all day doing Boolean Algebra trying to make my computer with the least amount of gates! This sucks!" #### Karnaugh: "yikes, you can just circle these 1s instead #### The Map Method for Synthesis of Combinational Logic Circuits M. KARNAUGH THE SEARCH for simple abstract techniques to be applied to the design of switching systems is still, despite some recent advances, in its early stages. The problem in this area which has been attacked most energetically is that of the synthesis of efficient combinational that is, nonsequential, logic circuits. be convenient to describe other methods in terms of Boolean algebra. Whenever the term "algebra" is used in this paper, it will refer to Boolean algebra, where addition corresponds to the logical connective "or," while multiplication corresponds to "und." The minimizing chart,2 developed at simu varia called possil For there may four value been axes. which or ve one o If ! midse into ! Figure 1: A genius idea ### What is a Karnaugh Map? Motivation. #### K-Maps: What? - Resource efficiency: Minimize the number of gates/transistors to implement a logic function (#1 most important reason, but mostly computers do this now) - "Seeing" Boolean algebra: Graphical depiction of boolean algebra minimization. - Some folks are visual: You can use K-maps to do tons of algebra really fast. - They're cool: You can use geometric pattern matching to do Boolean algebra. # Graphical illustration of Karnaugh Maps # How do K-maps work? Basically, you just twist the truth table into a hyperdimensional donut... what..?—Yes...really. I know, it's wild! Source: Wikipedia #### The truth... and why we're still covering this - K-maps were once essential for making efficient computers. - In the past few decades, they have largely been replaced by computers themselves. (Check out the research area of *Automated Theorem proving*). - We will only be covering the basics in this course. What? I can't with this donut thing, let's do some examples ECE 2020: Karnaugh Maps and CMOS review #### Example from the ground up ### Example from the ground up Suppose you want to build a *digital system*. Suppose that you figure out how to express the thing that you want your system to **do in words** like this: $$F = \begin{cases} 1 & \text{at least two inputs are false} \\ 0 & \text{otherwise} \end{cases}$$ #### You all now have the tools to design the entire system! Steps: - 1 Find the simplest way to represent F using a K-map - 2 Build a gate-level schematic for your design - 3 Build a CMOS level schematic for your design # Big-picture example of Exam 1 material i | _ | 3 | _ | | | |---|---|---|-----|---| | A | В | С | F | | | 0 | 0 | 0 | 1. | 4 | | 0 | 0 | 1 | 1 | ~ | | 0 | 1 | 0 | 1 | | | 0 | 1 | 1 | 0 | | | 1 | 0 | 0 | 1 | | | 1 | 0 | 1 | 0 | | | 1 | 1 | 0 | 0 0 | | | 1 | 1 | 1 | 0 | | # Big-picture example of Exam 1 material ii **Step 2:** Create an empty K-map to populate with your truth table. ### K-maps - It is up to your taste which variables to put on which side. - Split your variables split to form a 2^{#inputs} rectangle. - The ordering of the binaries is called the "Gray code" ### Big-picture example of Exam 1 material iii ### The Gray Code The **Gray Code** for ordering binary numbers refers to ordering the binary numbers such that two values differ by only **one bit**. Examples: ``` (2 bits) 00, 01, 11, 10, ... (3 bits) 000, 001, 011, 010, 110, 111, 101, 100, ... ``` We use the Gray Code binary number ordering for K-Maps. #### Big-picture example of Exam 1 material iv - Question: Why Gray Code? - Answer: Because we only have to physically change one switch at a time to move through Gray Coded binary numbers, and this maintains the donut structure. - Foreshadowing: What are other reasons it can be useful to have only one switch move at a time? What if there are switch delays over time? Big-picture example of Exam 1 material $\,v\,$ ECE 2020: Karnaugh Maps and CMOS review **Step 4:** Find the simplest form by grouping graphically: $$F = \overline{A} \cdot \overline{B} + \overline{A} \cdot \overline{C} + \overline{B} \cdot \overline{C}.$$ It is up to your taste which variables to put on which side. " winterms term K-maps - Note the "donut action" creating the yellow group between m₀, m₂ squares across a 3rd dimension. - Warning: You can only create 1s groups that sizes of powers of 2, e.g.: 1, 2, 4, ECE 2020: Karnaugh Maps and CMOS review #### Note on "Don't-Cares" #### Gate level schematic Gate-level schematic: #### CMOS schematic CMOS schematic: Suggested exercise # Example 2 Problem statement A half adder circuit accepts 2 binary numbers $A, B \in \{0,1\}$ and has 2 outputs: - The sum of A and B, which we represent by the operation $S = A \oplus B$ - The carry of the sum, $C = A \cdot B$. Truth table: | Α | В | $S = A \oplus B$ | $C = A \cdot B$ | |---|---|------------------|-----------------| | 0 | 0 | 0 | 0 | | 0 | 1 | 1 | 0 | | 1 | 0 | 1 | 0 | | 1 | 1 | 0 | 1 | Table 1: The half adder #### Suggested bonus #### Suggested bonus exercise A **full adder** circuit accepts 2 binary numbers $A, B \in \{0,1\}$, and a "carry in" term $C_{in} \in \{0,1\}$ that can come from another sum. The full adder returns the sum of A and B, and the *carry out*, C_{out} . The truth table is on the following slide. #### Questions: - Derive the simplest possible forms of the full adder sum signal S, and carry signal C_{out} using a 2 \times 4 K-map for each. - Draw a gate-level schematic for the full adder. #### Full adder truth table | Α | В | C_{in} | C_{out} | 5 | |---|---|----------|------------------|---| | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 1 | 0 | 1 | | 0 | 1 | 0 | 0 | 1 | | 0 | 1 | 1 | 1 | 0 | | 1 | 0 | 0 | 0 | 1 | | 1 | 0 | 1 | 1 | 0 | | 1 | 1 | 0 | 1 | 0 | | 1 | 1 | 1 | 1 | 1 |