

ECE 2020 Lecture 2: Switches, Transistors, and Logic Levels

Instructor: Samuel Talkington

August 29, 2024

Logistics

- Office hours happened today! Any additional questions?
- Adjustment to office hours schedule this week: Friday office hours virtual.
- Extra in-person office hours: Tues. Sep. 3rd, 11:30am-1pm.
- First homework assignment due date extended to September 4th, 2024, 11:59pm.
- Updated course schedule coming tonight after course survey deadline.

Exam schedule

- 1 Exam 1: September 15th
- 2 Exam 2: October 6th
- 3 Exam 3: November 3rd
- 4 Exam 4: TBD

weeks of

Trumbay of each

Agenda

- Recap of digital signals and boolean algebra
- Switching logic signals and truth tables
- Transistors
- Manipulating digital signals with Boolean logic
- DeMorgan's Theorem <-
- Understanding switching operations

Recap

Boolean variables

A **Boolean variable**, also known as a <u>binary variable</u>, is a variable that can take the values **one** or **zero** depending on whether some other thing is **true** or **false**, i.e.:

$$X = \begin{cases}
1 & \text{if some thing is true} \\
0 & \text{if some thing is false.}
\end{cases}$$

Digital signal

A digital signal, also known as a binary function, Boolean function, or logic function, is a function F that receives a collection of binary/boolean variables X, Y, ... as input:

$$Z = F(X, Y, \dots), \tag{2}$$

then performs a sequence of logical operations, and returns another binary Z.

Logic gates: Making logic pretty and practical

Logic gates

Are the fundamental building blocks of digital circuits.

The key idea

Gates = Operators
Circuits = Functions

ECE 2020 Lecture 2: Switches, Transistors, and Logic Levels

The NOT operator

The OR operator

The AND operator

The XOR operator

DeMorgan's Theorem

What is a Theorem?

What is a theorem?

What is a theorem?

A *theorem* is a *non-obvious* mathematical relationship that works as long as some other assumptions are true.

DeMorgan's Theorem

Assumption: Suppose that you are given any two digital signals

$$\underline{X,Y} = \begin{cases} 1 & \text{if something is true} \\ 0 & \text{if something is false} \end{cases}$$

Then, the following two logical relationships are always true:

$$\overline{X + Y} = \overline{X} \cdot \overline{Y}$$

$$\overline{X \cdot Y} = \overline{X} + \overline{Y}$$

(3a)

(ЗЬ)

Proof of DeMorgan's first Theorem by Truth Table

Hold on...

This is amazing.

We just figured out something that is not obvious *at all*, but it's **always** true for **any** two digital signals...

Challenge question

Challenge question

Can you prove DeMorgan's Theorem using the inverse identities?

$$A + \overline{A} = 1 \tag{4a}$$

$$A \cdot \overline{A} = 0$$
 (4b)

To appear as bonus on the second homework.

Participation puzzle!

Solve the following puzzle on a piece of paper.

After class, fill out the short survey on Canvas.

Remember, any submission receives full credit.

Participation puzzle

Let X and Y be two digital signals. We just reviewed the first one of DeMorgan's laws: $\overline{X+Y} = \overline{X} \cdot \overline{Y}$. Now, you try DeMorgan's other law:

$$\overline{X \cdot Y} = \overline{X} + \overline{Y}. \tag{5}$$

- 1 Use a truth table to prove that this law is true.
- 2 Do you know what gate this represents? If so, draw it and name it.

Please write your name somewhere so I can give you credit :)

Remember, any submission receives full credit.

X	i v l	X	. У .	X • Y	1 × 4	X + X
0	0	.1.		0	!	
0	. !	. ' .	. 0	O.		
- 1 -	. 0	0		0 00 0		
111	1	0	0	1	0	1 0

Switching

A very simple, but powerful idea

A **switch** is a simple but powerful idea:

Either electricity flows through a circuit or it does not

So, we can represent logic via switches too!

OHM'S LAW!

Logic gates are actually...switches?

I've spent years of my life studying it, but **electricity** can be confusing.

Logic gates are a little less confusing.

Thankfully, if you know a *little bit* of logic gates, it turns out you know a *lot* about circuits.

Rapid review of electricity fundamentals

ECE 2020 Lecture 2: Switches, Transistors, and Logic Levels

Transistors

We're all sort of familiar with switches. But these days, there's a better device—a *transistor*

" Electronic Switches"

What is CMOS?

CMOS

A complimentary metal oxide semiconductor field effect transistor (CMOS) is a 3-terminal device that acts like a voltage-controlled resistance. It is a **powered switch** that can be controlled with a voltage.

In digital logic, a MOS transistor is operated so its <u>resistance</u> is always either very high (and the transistor is "off") or very low (and the transistor is "on").

ECE 2020 Lecture 2: Switches, Transistors, and Logic Levels

Logic

$$R_{ds} = \begin{cases} \text{large } \Omega & v_{gs} \leq 0 \\ \underline{\text{small } \Omega} & v_{\underline{gs}} > 0 \end{cases}$$

I=R

ECE 2020 Lecture 2: Switches, Transistors, and Logic Levels

Logic

$$R_{ds} = egin{cases} \mathsf{small} \ \Omega & v_{gs} < 0 \ \mathsf{large} \ \Omega & v_{gs} \geq 0 \end{cases}$$

Transistors: They are just cool-looking switches.

We can use NMOS and PMOS transistors (switches) to design logical operations in real life!

ECE 2020 Lecture 2: Switches, Transistors, and Logic Levels

Inverter design example

Example

Suppose you want to implement, with CMOS switches, the NOT gate (aka, inverter):

$$v_{\text{out}} = \overline{v_{\text{in}}}$$

How would this be done?

Foreshadowing

Think about it for a second:

There's an infinite number of real numbers and integers. But we can **count** the integers.

Wait... how do we even store real numbers in computers?

Think about it... number systems are coming soon