
ECE 2020:
State Machines

Instructor: Samuel Talkington

October 24, 2024



Logistics
• Exam 2 revisions due tonight: Any questions about this?

• Old notes for this module from a previous semester are now available on Canvas;
our focus may differ, but I want you to have as many resources as possible.



Mid-semester survey
Thank you all so much for the feedback on the mid-semester survey.

I am still going through the comments (the level of detail is extremely appreciated).

Here are some of the highlights for things I am trying to do better at:



Improvement highlights:
• More practice exams: ×2 Exam 3 practice exams have now been posted.

• More resources: I’m updating the collection of past semester notes for this
module in the “Past Semesters” folder on Canvas. Check back in later tonight for
future material so you can read ahead.

• More examples: Multiple examples in this lecture :)



Coming soon
• Problem set 4: Now available, due Novermber 8th or 10th.

• Problem set 5: Coming soon; I advise you to start early on pset 4.

• Prelab 2: Released, officially due before lab, but you can turn it in later.

• Lab 2: Released, will occur in-class on October 31st, 2024—may potentially be
pushed back depending how we feel after today’s lecture

• Exam 3: Tentatively November 14th, in class.



Next up: the core of computers

Agenda: next 2 weeks
• Sequential logic

• Latches

• Flip flops

• State machines

Source: xkcd



Motivation: How does memory work

Todays agenda:

• JK flip flops + examples

• Finite state machines again

• Applications of finite state machines

• Examples with state machines

ECE 2020: State Machines



JK flip flops



The JK flip flop

• The idea of a JK flip flop is that it combines the D, and T flip flops into one device,
in some sense.

• It behaves like an SR latch without forbidden state, where S → J and R → K .

• If the forbidden inputs occur, the device goes into toggle mode.

• Invented by an engineer named Jack Kilby. . . I wonder what the J and K stand for

ECE 2020: State Machines



The JK flip-flop

Transition table
J K clk Q function
0 0 ↑ Q hold
0 1 ↑ 0 reset
1 0 ↑ 1 set
1 1 ↑ Q toggle

Characteristic table
For each timestep t:

Jt Kt Qt Qt+1 function
0 0 0 0 hold state
0 0 1 1 hold state
0 1 0 0 reset state
0 1 1 0 reset state
1 0 0 1 set state
1 0 1 1 set state
1 1 0 1 toggle state
1 1 1 0 toggle state

ECE 2020: State Machines



Kmap for JK flip flop

Derive the characteristic equation for the
JK flip flop using a Karnaugh Map:

Characteristic equation

Qt+1 = JtQt + KtQt

ECE 2020: State Machines



Example: JK FF Timing

Sketch the JK flip flop timing diagram

ECE 2020: State Machines



State machines



How do computers actually work?

ECE 2020: State Machines



State machines

Latches and flip flops let us store information.

How do we perform actions based on what has happened in the past? (Our memory)

State machines... We’ve seen this this week! Let’s remind ourselves:

ECE 2020: State Machines



Defining state diagrams explicitly

ECE 2020: State Machines



Finite state machines

Definition: Finite state machine (FSM)
An n-dimensional finite state machine (FSM) is an abstract model of a computer,
which is defined by a collection of 5 elements (Q,X , δ, q0,F), where

• the set of all available states is Q = {q1, q2, ...}
• the set of all available inputs is X = {x1, x2, ...}
• the state transition function is δ : Q×X → Q
• the initial state is q0 ∈ Q, and

• the set of final states is F ⊆ Q (it can possibly be empty).

ECE 2020: State Machines



State transition

State transition function
The state transition function δ : Q×X → Q takes in a current state and the
present input and returns a new element qt+1 ∈ Q from the set of all states Q.
We can write:

qt+1 = δ(qt, xt).

ECE 2020: State Machines



synchronous FSM
• Depends on inputs and state at
discrete instances of time

• e.g. clocked CPU chips,
flip-flops, chip registers etc.

• this is what we care about

asynchronous FSM
• Depends on inputs and states
at any instance of time

• e.g. interrupt-driven
computers, asynchronous
communication systems, etc.



Mealy FSM
• Output depends on both

present state and inputs

• The input / output is labelled
along each transition arc

Moore FSM
• The output depends on present
state only

• The input is labeled along each
transition arc

• Output is labeled inside the
circle, i.e., each state has a
single output.



Applications of State Machines



Example 1: Mealy and Moore State Machines

Example 1
Suppose that we have:

• states Q :=
{
qk , qj

}
• inputs X := {a, b}
• outputs F ; = {y, z}
• initial state q(0) = qk

Draw the Mealy and Moore FSMs.

ECE 2020: State Machines



Example 2: Sequence recognizer

Example 2
Suppose that we have:

• input X(t) ∈ {0, 1}
• outputs Z(t) ∈ {0, 1}, where

Z(t) =

1 (Xt−3 ... Xt)2 = (1101)2
0 otherwise

i.e., the system should output 1
when last four inputs are 1101.

Questions:

• Define the states

• How to do this in Mealy and Moore
models?

ECE 2020: State Machines



Example 2 Approach

Time 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
X(t) 1 0 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1
Z(t)

ECE 2020: State Machines



Example 2 Approach

Time 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
X(t) 1 0 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1
Z(t) 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1

• Need states that remember at least 3 bits of past data (past values of X(t)).

• Specifically, we need states that are at least [1], [1, 1], and [1, 1, 0].

• The actual states we use depend on whether we choose Mealy or Moore.

ECE 2020: State Machines



Example 2.1: Solution with Mealy machine

Example 2: Mealy solution
Define the states Q = {q0, q1, q2, q3}, where:

• q0 = [∅], initial state (empty)

• q1 = [1] : sub-pattern 1 detected

• q2 = [11] : sub-pattern 11 detected

• q3 = [110] : sub-pattern 110 detected – what happens?

ECE 2020: State Machines



Example 2.1: Solution with Mealy machine

States
Define the states
Q = {q0, q1, q2, q3}, where:

• q0 = [∅], initial state
• q1 = [1] : detected 1

• q2 = [11] : detected 11

• q3 = [110] : detected 110

ECE 2020: State Machines



Example 2.2: Moore machine pattern recognition

We can also approach pattern recognition with a Moore Machine.

In contrast with the Mealy approach, we need to assign a unique output to each state.

Therefore, for Example 2, we will need to add an additional state q4 = [1101].

ECE 2020: State Machines



Example 2.2: Solution with Moore machine

Example 2.2: Moore solution
Define the states
Q = {q0, q1, q2, q3, q4}, where:

• q0 = [∅], initial state (empty)

• q1 = [1] : sub-pattern 1 detected

• q2 = [11] : sub-pattern 11
detected

• q3 = [110] : sub-pattern 110
detected

• q4 = [1101] : sub-pattern 1101
detected

ECE 2020: State Machines



General idea: pattern matching problem

Pattern matching problems
If your input is a binary signal X and you want to track the appearance of a
particular pattern in X across time, do the following:

• Create a string matching tree

• State output = 1 if a pattern is contained along a path

• Add failure edges–pick the longest suffix of the string seen so far and
transition to the corresponding prefix state.

ECE 2020: State Machines



Example 3: General Pattern Recognition

Example 3
Let X(t) ∈ {0, 1} be a streaming binary input. Create a Moore Machine that
outputs 1 if any of the following patterns are detected:

• 1101

• 1011

• 101

ECE 2020: State Machines



Example 3: Detect 1101, 1011, 101

ECE 2020: State Machines



Implementation of state machines
with sequential logic



Implementing state machines

Thus far, our states Q can be quite abstract.

To build state machines using sequential logic, we need to represent our states Q in
binary—that is, we need to encode them into numbers.

ECE 2020: State Machines



Encoding

• Given a list of states Q with n elements, we need at least ⌈log2(n)⌉ bits to
encode each state in binary.

• The minimum number of bits ⌈log2(n)⌉ is known as compact encoding.

• It is sometimes easier to assign each state its own bit, i.e., to use n bits.

• Using 1 bit per state is known as one-hot encoding. (sound familiar?)

ECE 2020: State Machines



Example 4: 1101 Sequence Detector Compact Encoding

Recall that 1101 sequence detector for a streaming binary signal. Fill in the compact
encoding characteristic table.

Figure 1: 1101 sequence detector
(Mealy form)

S1(t) S0(t) X(t) S1(t + 1) S0(t + 1) Z(t)
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

ECE 2020: State Machines



Example 4: Karnaugh Map for S1(t + 1)

Karnaugh Map for S1(t + 1) :
S1S0

X

00 01 11 10

0

1

S1(t) S0(t) X(t) S1(t + 1) S0(t + 1) Z(t)
0 0 0 0 0 0
0 0 1 0 1 0
0 1 0 0 0 0
0 1 1 1 0 0
1 0 0 1 1 0
1 0 1 1 0 0
1 1 0 0 0 0
1 1 1 0 1 1

ECE 2020: State Machines



Example 4: Karnaugh Map for S0(t + 1)

Karnaugh Map for S0(t + 1) :
S1S0

X

00 01 11 10

0

1

S1(t) S0(t) X(t) S1(t + 1) S0(t + 1) Z(t)
0 0 0 0 0 0
0 0 1 0 1 0
0 1 0 0 0 0
0 1 1 1 0 0
1 0 0 1 1 0
1 0 1 1 0 0
1 1 0 0 0 0
1 1 1 0 1 1

ECE 2020: State Machines



Example 4: Karnaugh Map for Z(t)

Karnaugh Map for Z(t) :
S1S0

X

00 01 11 10

0

1

S1(t) S0(t) X(t) S1(t + 1) S0(t + 1) Z(t)
0 0 0 0 0 0
0 0 1 0 1 0
0 1 0 0 0 0
0 1 1 1 0 0
1 0 0 1 1 0
1 0 1 1 0 0
1 1 0 0 0 0
1 1 1 0 1 1

ECE 2020: State Machines



Device-level state machine
implementation



From FSMs to Circuits

Each state bit can be implemented
using one D-flip flop.

• E.g., if we encode the states as
S2, S1, S0, we need 3 FFs.

• Present state = output of D-FF

• Next state = input of D-FF
Figure 2: Relationship between D-FF and
FSM states

ECE 2020: State Machines



From FSMs to Circuits

You need to use additional
combinational logic to input:

• Next state updates

• Sequential logic circuit outputs

• E.g., HW4 “Flipping and
Flopping” problem.

Figure 3: Relationship between D-FF and
FSM states

ECE 2020: State Machines


	JK flip flops
	State machines
	Applications of State Machines
	Implementation of state machines with sequential logic
	Device-level state machine implementation

