
ECE 2020:State Machines
Instructor: Samuel Talkington

October 24, 2024

Logistics
• Exam 2 revisions due tonight: Any questions about this?

• Old notes for this module from a previous semester are now available on Canvas;
our focus may di�er, but I want you to have as many resources as possible.

Mid-semester survey
Thank you all so much for the feedback on the mid-semester survey.

I am still going through the comments (the level of detail is extremely appreciated).

Here are some of the highlights for things I am trying to do better at:

Improvement highlights:
• More practice exams: ⇥2 Exam 3 practice exams have now been posted.

• More resources: I’m updating the collection of past semester notes for this
module in the “Past Semesters” folder on Canvas. Check back in later tonight for
future material so you can read ahead.

• More examples: Multiple examples in this lecture :)

Coming soon
• Problem set 4: Now available, due Novermber 8th or 10th.

• Problem set 5: Coming soon; I advise you to start early on pset 4.

• Prelab 2: Released, o�cially due before lab, but you can turn it in later.

• Lab 2: Released, will occur in-class on October 31st, 2024—may potentially be
pushed back depending how we feel after today’s lecture

• Exam 3: Tentatively November 14th, in class.

Next up: the core of computers
Agenda: next 2 weeks
• Sequential logic

• Latches

• Flip �ops

• State machines

Source: xkcd

-v

-

Motivation: How does memory work

Todays agenda:

• JK �ip �ops + examples

• Finite state machines again

• Applications of �nite state machines

• Examples with state machines

ECE 2020: State Machines

JK �ip �ops

The JK �ip �op

• The idea of a JK �ip �op is that it combines the D, and T �ip �ops into one device,
in some sense.

• It behaves like an SR latch without forbidden state, where S ! J and R ! K .

• If the forbidden inputs occur, the device goes into toggle mode.

• Invented by an engineer named Jack Kilby. . . I wonder what the J and K stand for

ECE 2020: State Machines

(sm) = (11) -> forbidden !

(1)=(1)-> Toggle flip flop

The JK �ip-�op

Transition table
J K clk Q function
0 0 " Q hold
0 1 " 0 reset
1 0 " 1 set
1 1 " Q toggle

Characteristic table
For each timestep t:

Jt Kt Qt Qt+1 function
0 0 0 0 hold state
0 0 1 1 hold state
0 1 0 0 reset state
0 1 1 0 reset state
1 0 0 1 set state
1 0 1 1 set state
1 1 0 1 toggle state
1 1 1 0 toggle state

ECE 2020: State Machines

Truth table with time

-
positive edge
trigger 3

-

-

-]--
--

un

forbidden onSie latches

Kmap for JK �ip �op

Derive the characteristic equation for the
JK �ip �op using a Karnaugh Map:

Characteristic equation
Qt+1 = JtQt + KtQt

ECE 2020: State Machines

t
-S↓=
-

Example: JK FF Timing

Sketch the JK �ip �op timing diagram

ECE 2020: State Machines

Look a value just before clock cycle
- Is it the sevey forJK:

i "
i ↓ i
! I

-

onoi I i !
1k=)

k=0
I

↑ I ! !
! "·~

i
hold reset toggle

State machines

How do computers actually work?

ECE 2020: State Machines

State machines

Latches and �ip �ops let us store information.

How do we perform actions based on what has happened in the past? (Our memory)

State machines... We’ve seen this this week! Let’s remind ourselves:

ECE 2020: State Machines

De�ning state diagrams explicitly

ECE 2020: State Machines

Finite state machines

Definition: Finite state machine (FSM)
An n-dimensional �nite state machine (FSM) is an abstract model of a computer,
which is de�ned by a collection of 5 elements (Q,X , �, q0,F), where

• the set of all available states is Q = {q1, q2, ...}
• the set of all available inputs is X = {x1, x2, ...}
• the state transition function is � : Q⇥ X ! Q
• the initial state is q0 2 Q, and

• the set of �nal states is F ✓ Q (it can possibly be empty).

ECE 2020: State Machines

-

4)
final subsetof all

States states

State transition

State transition function
The state transition function � : Q⇥ X ! Q takes in a current state and the
present input and returns a new element qt+1 2 Q from the set of all states Q.
We can write:

qt+1 = �(qt, xt).

ECE 2020: State Machines

↓
E

I & I current
mestate Current input

state

synchronous FSM
• Depends on inputs and state at
discrete instances of time

• e.g. clocked CPU chips,
�ip-�ops, chip registers etc.

• this is what we care about

asynchronous FSM
• Depends on inputs and states
at any instance of time

• e.g. interrupt-driven
computers, asynchronous
communication systems, etc.

*
mase

shift
-

M

L

Mealy FSM
• Output depends on both

present state and inputs

• The input / output is labelled
along each transition arc

Moore FSM
• The output depends on present
state only

• The input is labeled along each
transition arc

• Output is labeled inside the
circle, i.e., each state has a
single output.

Xi\y
i/o

D
·i

-

Applications of State Machines

Example 1: Mealy and Moore State Machines

Example 1
Suppose that we have:

• states Q :=
�
qk , qj

• inputs X := {a, b}
• outputs F ; = {y, z}
• initial state q(0) = qk

Draw the Mealy and Moore FSMs.

ECE 2020: State Machines

⑭
#

3S
Given these diagrams

Example 2: Sequence recognizer

Example 2
Suppose that we have:

• input X(t) 2 {0, 1}
• outputs Z(t) 2 {0, 1}, where

Z(t) =

8
<

:
1 (Xt�3 ... Xt)2 = (1101)2
0 otherwise

i.e., the system should output 1
when last four inputs are 1101.

Questions:

• De�ne the states

• How to do this in Mealy and Moore
models?

ECE 2020: State Machines

~

-

-

Example 2 Approach

Time 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
X(t) 1 0 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1
Z(t)

ECE 2020: State Machines

Looking forpattle
to look

↓
"

· 000000010000 10 s

Example 2 Approach

Time 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
X(t) 1 0 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1
Z(t) 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1

• Need states that remember at least 3 bits of past data (past values of X(t)).

• Speci�cally, we need states that are at least [1], [1, 1], and [1, 1, 0].

• The actual states we use depend on whether we choose Mealy or Moore.

ECE 2020: State Machines

Example 2.1: Solution with Mealy machine

Example 2: Mealy solution
De�ne the states Q = {q0, q1, q2, q3}, where:
• q0 = [;], initial state (empty)

• q1 = [1] : sub-pattern 1 detected

• q2 = [11] : sub-pattern 11 detected

• q3 = [110] : sub-pattern 110 detected – what happens?

ECE 2020: State Machines

S- & teI ou

transition

togi

Example 2.1: Solution with Mealy machine

States
De�ne the states
Q = {q0, q1, q2, q3}, where:

• q0 = [;], initial state
• q1 = [1] : detected 1

• q2 = [11] : detected 11

• q3 = [110] : detected 110

ECE 2020: State Machines

1/

& >
do

i⑭[0]
i %0

i
&iequir to i

Example 2.2: Moore machine pattern recognition

We can also approach pattern recognition with a Moore Machine.

In contrast with the Mealy approach, we need to assign a unique output to each state.

Therefore, for Example 2, we will need to add an additional state q4 = [1101].

ECE 2020: State Machines

final more.

Example 2.2: Solution with Moore machine

Example 2.2: Moore solution
De�ne the states
Q = {q0, q1, q2, q3, q4}, where:

• q0 = [;], initial state (empty)

• q1 = [1] : sub-pattern 1 detected

• q2 = [11] : sub-pattern 11
detected

• q3 = [110] : sub-pattern 110
detected

• q4 = [1101] : sub-pattern 1101
detected

ECE 2020: State Machines

ore:

5 total states W

&
·&O

O

i byC
↳

General idea: pattern matching problem

Pattern matching problems
If your input is a binary signal X and you want to track the appearance of a
particular pattern in X across time, do the following:

• Create a string matching tree

• State output = 1 if a pattern is contained along a path

• Add failure edges–pick the longest su�x of the string seen so far and
transition to the corresponding pre�x state.

ECE 2020: State Machines

-

Example 3: General Pattern Recognition

Example 3
Let X(t) 2 {0, 1} be a streaming binary input. Create a Moore Machine that
outputs 1 if any of the following patterns are detected:

• 1101

• 1011

• 101

ECE 2020: State Machines

-

Example 3: Detect 1101, 1011, 101

ECE 2020: State Machines

O I
&

-

Implementation of state machines
with sequential logic

Implementing state machines

Thus far, our states Q can be quite abstract.

To build state machines using sequential logic, we need to represent our states Q in
binary—that is, we need to encode them into numbers.

ECE 2020: State Machines

Encoding

• Given a list of states Q with n elements, we need at least dlog2(n)e bits to
encode each state in binary.

• The minimum number of bits dlog2(n)e is known as compact encoding.

• It is sometimes easier to assign each state its own bit, i.e., to use n bits.

• Using 1 bit per state is known as one-hot encoding. (sound familiar?)

ECE 2020: State Machines

Example 4: 1101 Sequence Detector Compact Encoding

Recall that 1101 sequence detector for a streaming binary signal. Fill in the compact
encoding characteristic table.

Figure 1: 1101 sequence detector
(Mealy form)

S1(t) S0(t) X(t) S1(t + 1) S0(t + 1) Z(t)
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

ECE 2020: State Machines

Example 4: Karnaugh Map for S1(t + 1)

Karnaugh Map for S1(t + 1) :
S1S0

X

00 01 11 10

0

1

S1(t) S0(t) X(t) S1(t + 1) S0(t + 1) Z(t)
0 0 0 0 0 0
0 0 1 0 1 0
0 1 0 0 0 0
0 1 1 1 0 0
1 0 0 1 1 0
1 0 1 1 0 0
1 1 0 0 0 0
1 1 1 0 1 1

ECE 2020: State Machines

Example 4: Karnaugh Map for S0(t + 1)

Karnaugh Map for S0(t + 1) :
S1S0

X

00 01 11 10

0

1

S1(t) S0(t) X(t) S1(t + 1) S0(t + 1) Z(t)
0 0 0 0 0 0
0 0 1 0 1 0
0 1 0 0 0 0
0 1 1 1 0 0
1 0 0 1 1 0
1 0 1 1 0 0
1 1 0 0 0 0
1 1 1 0 1 1

ECE 2020: State Machines

Example 4: Karnaugh Map for Z(t)

Karnaugh Map for Z(t) :
S1S0

X

00 01 11 10

0

1

S1(t) S0(t) X(t) S1(t + 1) S0(t + 1) Z(t)
0 0 0 0 0 0
0 0 1 0 1 0
0 1 0 0 0 0
0 1 1 1 0 0
1 0 0 1 1 0
1 0 1 1 0 0
1 1 0 0 0 0
1 1 1 0 1 1

ECE 2020: State Machines

Device-level state machine
implementation

From FSMs to Circuits

Each state bit can be implemented
using one D-�ip �op.

• E.g., if we encode the states as
S2, S1, S0, we need 3 FFs.

• Present state = output of D-FF

• Next state = input of D-FF
Figure 2: Relationship between D-FF and
FSM states

ECE 2020: State Machines

From FSMs to Circuits

You need to use additional
combinational logic to input:

• Next state updates

• Sequential logic circuit outputs

• E.g., HW4 “Flipping and
Flopping” problem.

Figure 3: Relationship between D-FF and
FSM states

ECE 2020: State Machines

