

ECE 2020 Lecture 1: Digital logic signals

Instructor: Samuel Talkington

August 22, 2024

Logistics

- Office hours starting next week TR/F 11:30am-1:00pm, Van Leer C248
- Course survey: fill out to let me know your feedback on...
 - Lecture style preferences
 - Content delivery
 - Homework flexibility preferences
- First homework assignment posted (just to get a taste).
 - (1) Want you to have a peaceful labor day
 - (2) Want your feedback early, so I can make this course more fun and helpful.
 - (3) If the workload is too high, please communicate this, don't suffer in silence.

Agenda

- Manipulating digital signals with Boolean logic
- Rules for Boolean operations
- Converting digital signals to different forms:
 - Truth tables
 - Boolean algebraic form
 - Gate-level schematics
 - Switching logic
 - Switching logic
 - Understanding switching operations

A few words

My goals this semester:

- I want to learn from you.
- I want to give you some interest in Electrical Engineering.
- I want everyone to succeed.
- I want everyone to feel welcome and comfortable.

How to succeed

Here's how to succeed in this course:

- This is an introductory course. There is no assumed knowledge in this course. If you don't understand something, stop me.
- Come to office hours so that we can learn from eachother (starts next week!).
- Use Piazza freely. There are no stupid questions.

Recap

Digital signal

A digital signal, or **binary**, **logic**, or **Boolean** signal \underline{X} is a variable that can take the values **one** or **zero** depending on whether some other thing is **true** or **false**, i.e.:

$$X = \begin{cases} 1 & \text{if some thing is true} \\ 0 & \text{if some thing is false.} \end{cases}$$
 (1)

Digital signal

Logic gates = Boilding blocks

What are logic gates?

Logic gates are the basic building blocks of digital circuits. They allow you to encode human decision-making in an electrical circuit.

Logic gates let us avoid thinking about electricity, and instead focus on the problem we want to solve.

Boolean algebra

What is Boolean Algebra?

Boolean algebra is a set of ${f mathematical\ rules}$ for manipulating digital signals.

It is useful for:

- (1) Simplifying gate-level logic circuits
- (2) Understanding how a system behaves
- (3) Creating new inputs or outputs to other systemsto other systems

Order of operations

The **order of operations** for Boolean Algebra is *almost* the same as normal algebra:

- (1) Parentheses
- (2) NOT
- (3) AND
- (4) OR

The Boolean identities are a series of laws that describe how to manipulate digital signals. We will go through them now.

2)
$$\times + \times = \times$$
, $\times \cdot \times = \times$ "lampotence"
3.) Complement

$$X + X = 1$$
 $X \cdot X = 0$

5.) Distripoting:
$$X(A+S) = XA + XS$$

 $X(AS) = (XA)S$

E) Absorption:
$$X + XY = X$$
, $X(X+Y) = X$

De Morgan's Theorems
$$\frac{10.)}{X+Y} = \frac{1}{X} \cdot \frac{1}{Y} \Leftrightarrow \frac{1}{X} \cdot \frac{1}{Y} = \frac{1}{X} \cdot \frac{1}{Y}$$

2) Distributive:
$$X + (Y+Z) = (X+Y) + Z$$

$$X(YZ) = (XY)Z$$

$$X(Y+Z) = XY + XZ$$

Examples

Example 1

Let's consider a friendly logic function:

$$F(A, B, C) = C + (\overline{CB} + B\overline{A})$$
. = 1

What is the value of of

$$F(1,0,1) = ...?$$

Draw the logic gate circuit.

$$F(A,B,C) = C + (CR + BA)$$

$$F(I,0,1) = 1 + (T \cdot O + O \cdot T)$$

$$= 0$$

$$= 1.$$

$$F(I,0,1) = 1$$

$$Gate - Level Schematic$$

Examples

Example 2

Let's consider a slightly less friendly logic function:

$$F(A,B,C,D) = A \cdot \overline{\left(B + \overline{C} \cdot D\right)} + \overline{A} \cdot \overline{\left(\overline{B} + C\right)}.$$

What is the value of

$$F(1, 0, 0, 1) = ...?$$

Draw the logic gate circuit.

Examples

0.X=0!

Example 2

Let's consider a slightly less friendly logic function:

$$F(A,B,C,D) = \underbrace{A \cdot \overline{B + \overline{C} \cdot D}}_{A} + \overline{A \cdot (\overline{B} + C)}.$$

What is the value of

$$F(1,0,0,1) = \Omega?$$

Draw the logic gate circuit.

$$F(A,B,C,D) = A \cdot (B + C \cdot D) + A \cdot (B + C)$$

$$Q: What is F(I,0,0,1) = ?$$

$$F(I,0,0,1) = I \cdot (0 + 0 \cdot 1) + I \cdot (0 + 0)$$

$$= I \cdot I + 0$$

$$= 0 \cdot F(I,0,0,1) = 0.$$

Gave - (avel Schematic