Digital System Design, Exam 1 (Fall 2024)

ECE 2020-IE 09/19/2024		
Name:		
I, on this exam_ and I have cond	, have neither given nor received unauthorized cted myself within the guidelines of the honor code of the Ge	help orgia
Institute of Technology.	and myself within the galactines of the holler code of the Ge	01810

Please read this information:

- Please show all your work.
- Please do not access the internet or any other communications channel.
- Please box or circle your final answers.
- This test has 3 problems that total up to 100 points.
- This test has 1 bonus problem worth up to 20 points.
- You have until the end of class to complete.

Boolean Identities

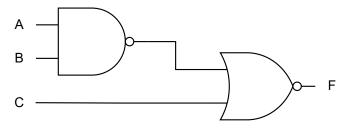
- Identity:
 - A + 0 = A
 - $\bullet \quad A \cdot 1 = A$
- Dominance:
 - A + 1 = 1
 - $\bullet \quad A \cdot 0 = 0$
- Idempotence:
 - $\bullet \quad A + A = A$
 - $\bullet \quad A \cdot A = A$
- Inverse:
 - $\bullet \quad A + \overline{A} = 1$
 - $\bullet \quad A \cdot \overline{A} = 0$
- Commutative:
 - $\bullet \quad A + B = B + A$
 - $\bullet \quad A \cdot B = B \cdot A$
- Associative:
 - A + (B + C) = (A + B) + C
 - $\bullet \quad A \cdot (B \cdot C) = (A \cdot B) \cdot C$
- Distributive:
 - $A \cdot (B+C) = A \cdot B + A \cdot C$
 - $A + B \cdot C = (A + B) \cdot (A + C)$
- Absorption:
 - $\bullet \quad A \cdot (A+B) = A$
 - $\bullet \quad A + A \cdot B = A$
- DeMorgan's:
 - $\bullet \quad \overline{(A+B)} = \overline{A} \cdot \overline{B}$
 - $\bullet \quad \overline{(A \cdot B)} = \overline{A} + \overline{B}$
- Double Complement:
 - $\overline{\overline{A}} = A$
- FOIL:
 - $(A+B)\cdot (C+D) = A\cdot C + A\cdot D + B\cdot C + B\cdot D$
- Disappearing Opposite:
 - $\bullet \quad A + \overline{A} \cdot B = A + B$

Problem 1: Logic Gates (30pts)

Question 1a. (10 pts)

Write a Boolean Algebra expression for the output of the logic circuit shown below.

F =

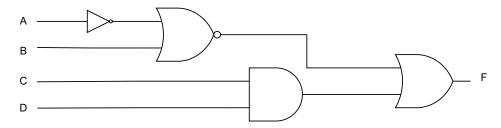


Logic Circuit 1.a.

Question 1b. (10 pts)

Write a Boolean Algebra expression for the output of the logic circuit shown below.

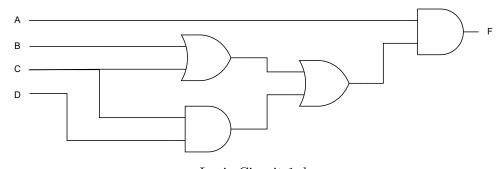
F =



Logic Circuit 1.b.

Question 1d. (10 pts)

Draw the switching logic for the logic circuit shown below, without simplifying anything. Hint: Only normally open switches are needed for this problem.



 ${\bf Logic~Circuit~1.d.}$

Problem 2: CMOS (30pts)

Consider the following logic function:

$$F = \overline{\overline{A \cdot B} + C}. \tag{1}$$

Question 2a. (15 pts)

Derive expressions for pull-up and pull-down networks that implement F and \overline{F} .

pull-up =

pull-down =

Question 2b. (15 pts)

Draw a schematic for the CMOS implementation of the logic function F. Label the locations of the source voltage $v_{\sf dd}$ and output voltage $v_{\sf out}$. Indicate the pull-up network and the pull-down network.

Note: You can use inputs like \overline{A} directly, without an inverter.

Hint: NMOS transistors are used in pull-down networks and PMOS transistors are used in pull-up networks.

Problem 3: Boolean Algebra (30pts)

Question 3a. (15 pts)

Using Boolean Algebra identities, simplify the following logic function. Justification earns partial credit.

$$F = A \cdot B \cdot C + \overline{A} + A \cdot \overline{B} \cdot C \tag{2}$$

Question 3b. (15 pts)

Using Boolean Algebra identities, simplify the following logic function. Justification earns partial credit.

$$F = \overline{A \cdot (\overline{B} \cdot \overline{C} + B \cdot C)} \tag{3}$$

Question (Bonus). (20 pts)

Let X,Y,Z be Boolean variables. Consider the following logic function:

$$F = X \cdot Y + Z \cdot Y + \overline{X} \cdot Z. \tag{4}$$

It is possible to simplify F to:

$$F_{\text{new}} = X \cdot Y + \overline{X} \cdot Z. \tag{5}$$

This is known as the *Consensus Theorem*. Use the empty truth table and K-map shown below to demonstrate that the Consensus Theorem is true, by showing that $F = F_{new}$.

Hint: As long as all 1s remain covered by other groups, you can remove any single grouping from a K-map. Note: The only column you need to fill in the truth table is F, all other columns are optional.

X	Y	Z	$X \cdot Y$	$Z \cdot Y$	$\overline{X} \cdot Z$	F
0	0	0				
0	0	1				
0	1	0				
0	1	1				
1	0	0				
1	0	1				
1	1	0				
1	1	1				

		YZ					
		00	01	11	10		
X	0						
	1						

Scratch paper; if used, please clearly indicate which question you are working on