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Previous work

Traditional sensor placement: 
offline, static

Select locations (a subset of nodes) to 
install sensors and measure continuously

Without 
sensors

With 
sensors
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Motivation

Sensor placement in 
power systems is 

wrong! 

We have sensors 
at every node: 
The problem is 
how we sense!

Dave Rieken, 
Vice President of 

Research

We make smart meters, 
folks!

Here’s an algorithm 
that selects sensor 

locations

Samuel 
Talkington

70% of North American households have smart meters, EIA, 2020.
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Sensor placement–or sampling?

Which sensors 
to read

Width

The key limitation is a 
communication 
bandwidth limit

Dave Rieken, 
Vice President of 

Research

70% of North American households have smart meters, EIA, 2020.
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The problem
• Power distribution networks have high levels

of sensors already, but with...

• Limited communication bandwidth.

• How do we dynamically monitor these
sensor networks efficiently?

• i.e., how to move these flashlights
around?
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Power distribution systems

Figure 1: A distribution network can be modeled as a tree network, |N | = n, and |E| = n− 1.
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Select only a few sensors

Inactive meters

Selected meters

Network

Substation

Figure 2: Key idea: we can only select a few sensors

6/30



Select S, find worst case in S

Inactive sensors

Sampled sensors

Network

Figure 3: From S , what’s the worst case voltage?
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Grid model
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Power flow equations: Recap

• A grid is a graph: G = (N , E), with n = |N | nodes.
• Nodal voltages: u = v ◦ exp(jθ) ∈ Cn

v ∈ Rn voltage magnitudes
θ ∈ (−π,π]n voltage phase angles

• Nodal power injections: s = p+ jq ∈ Cn

p ∈ Rn, “active” power
q ∈ Rn, “reactive” power

• Y ∈ Cn×n nodal admittance matrix (generalized, complex-valued graph Laplacian)

Power flow equations s : Cn → Cn

s = diag(u)Yu

Strategic distribution network sensing
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Linear power flow model

Linear power flow model
A simple power flow model is formed by inverting the power flow Jacobian at the
flat start condition:[

p
q

]
≈

[
G −B
−B −G

][
v − 1
θ

]
⇐⇒

[
v − 1
θ

]
≈

[
R X
X −R

][
p
q

]
, (1)

where G,B ⪰ 0 are the real and imaginary components of the n× n reduced
admittance matrix Y = G + jB, and R,X ⪰ 0 are the resistance and reactance
matrices.
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Linear power flow model

For distribution (tree) networks, the voltage magnitudes v : Rn × Rn → Rn can be
approximated as a linear system:

v ≈ 1 + Rp+ Xq.

Linear distribution network model
Denoting ϵ := v − 1 as the voltage magnitude perturbations, we will analyze:

ϵ = Rp+ Xq.

Strategic distribution network sensing



Uncertain linear power flow model
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Uncertainty in p, controllable q

Assumptions
Introduce generic uncertainty with the following assumptions:

• The reactive power injections q are set by a linear controller with a gain
(ratio of reactive to active injections): κ = qi/pi , that is known for all nodes.

• The active power injections p are random with an unknown distribution
with bounds pi ∈

[
p, p
]

computed from historical data.
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Key points about randomness in p:
• The uncertainty assumptions for p that are neither Gaussian,
independent, nor identically distributed.

• Only requires bounds, which can be arise in engineering contexts such as:

• Hosting capacity values.
• Global horizontal irradiance (GHI) clear sky model data.
• Device manufacturer limits.
• Optimal power flow or other engineering constraints.
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Main result
Theorem (Concentration of Voltages Under Uncertain Power Injections)

Let p be an n-dimensional vector of random active power injections that are
bounded between p and p, and let ∆ := p− p denote the bound width. Let K be a
fixed n× n control matrix such that q = Kp. Then v = 1 + (R + XK)p, and
perturbations in nodal voltages satisfy

E [||v − 1||∞] ≤ 1
2

∆ ||R + XK ||∞
√

2 log(2n); (2)

moreover, for any t > 0,

Pr [||v − 1||∞ > t] ≤ 2n exp
{

−2t2

∆2 ||R + XK ||2∞

}
. (3)
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Graph Fourier transform

From the fixed power factor assumption, there is an orthonormal W ∈ Rn×n,
specifically, a graph Fourier basis, such that ψ := WTϵ is the graph Fourier
transform of the voltage magnitudes. In summary,

ϵ = (R + XK)︸ ︷︷ ︸
=L−1

p = WΛ−1WTp = Wψ (4)

Benefit: There exist efficient algorithms for sampling sensors with this special
structure (more on this later).
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Spectral bandit algorithm outline
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Strategy
At each time t: the learner picks b nodes to check the security.

The set of all strategies is the set of all subsets of b nodes.

A =
{
S ∈ 2N : |S| ≤ b

}
, (5)

so there are |A| =
(n
b

)
possible strategies. . . challenging in general!
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Reward
When the learner has selected sensors St ∈ A to ping, she observes a reward
f : A → R that looks like

f (S) = Worst case voltage in S . (6)

In symbols:
f (S) = max

i∈St
|ϵi | = max

i∈St
|vi − 1| = max

i∈St
|⟨w i ,ψ⟩| . (7)

This reward is the maximum voltage magnitude observed in the sampling strategy.
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How to catch a bandit
To pick the best sampling strategy, minimize the regret:

Regret = E [Best voltage sampling strategy − Your voltage sampling strategy]

If at first you don’t succeed. . . try again!
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Spectral bandit algorithm
Solution approach: At each timestep t, recursively compute an estimate of the
Fourier coefficients ψ for the voltage magnitudes v:

ψ̂t = arg min
ψ∈Rn

t−1∑
s=1

(vs − ⟨ws,ψ⟩)2 + β ||ψ||2Λ , (8)

where β > 0 is a regularization parameter that you choose. The indices
s = 1, ... t − 1 are the sampled nodes!
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Spectral regularization
The regularization term, ||ψ||Λ, promotes predictions of the voltages that are
electrically diverse:

||ψ||Λ :=
√
ψTLψ =

√∑
(i,j)∈E

yij(ψi − ψj)2. (9)

This is also known as the Dirichlet energy of the graph.
Relates to effective resistance...check out the paper for more information
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Intuition of spectral regularization

Spectral regularization promotes an 
electrically diverse sampling policy

Intuition: 
Sample nodes with 

large electrical 
distance

Uncorrelated!

Strategic distribution network sensing



Bandit algorithm solution
The regression problem has a closed form solution at each timestep t:

ψ̂t =
(

t−1∑
s=1

wswT
s + βΛ

)−1( t−1∑
s=1

wsvs

)
:= V−1

t

(
t−1∑
s=1

wsvs

)
.

Where s = 1, ... , t − 1 ∈ N are the sampled nodes! The voltage at one node is often
similar to its neighbor.

Q: How do we pick those samples?

Answer: Need to bridge the gap between the signal processing technique (spectral
bandits) and the structural concentration results.
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How do we pick those sampled nodes?

Selecting the sample s for each time step:

• Given a sampling budget b, pick the top b nodes ranked by upper confidence
bounds on the voltages

• Estimate ψ̂t

• Update upper confidence bounds (UCBs) for all nodes:

UCB =
∣∣∣wT

i ψ − 1
∣∣∣︸ ︷︷ ︸

exploitation

+ c ||w i ||V−1
t︸ ︷︷ ︸

exploration

The exploration term is determined by our concentration result (see the paper).

• Select the top b nodes greedily

• Continue on. . .
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Extension to sampling strategies

Theorem (Concentration of voltage within sampling strategies)

Let S ⊆ N be a sampling of b nodes. Suppose that ∆t := ∆ for all t, and suppose
that LinDistFlow accurately represents the network model. If the assumptions hold,
we have

E
[
max
i∈S

|vi − 1|
]
≲

1
2

∆ max
i∈S

∣∣∣∣∣∣Λ−1w i

∣∣∣∣∣∣2
2

√
2 log(b); (10)

moreover, for all ϵ > 0

Pr
[
max
i∈S

|vi − 1| > ϵ

]
≤ 2b exp

 −2ϵ2

∆2 max
i∈S

∣∣∣∣Λ−1w i
∣∣∣∣2

2

 . (11)
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Guaranteed performance
The regret of the sampler over m periods is bounded as

Rm ≤ Õ(d
√
m), (12)

where d is the effective dimension of the graph Laplacian:

d := max
i∈N

i s.t. (i − 1)λi ≤
m

log(1 +m/λ1)
, (13)

where λ1 is the smallest eigenvalue of L.
The optimal hyperparameter β depends on the effective dimension, the spectrum
of the Laplacian. See our paper ora for more.
aT. Kocák, et al., ”Spectral Bandits”, Journal of Machine Learning Research, 21 (1), Jan. 2020.
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Key take-away

Question: Why is this an improvement?

Answer: The worst case regret with standard least-squares is

Rm ≤ Õ(n
√
m),

where n is the number of nodes. Our result, by incorporating the graphical
structure1 of the power flow equations,

Rm ≤ Õ(d
√
m),

reduces the scaling factor to the intrinsic dimension, d < n, of the graph Laplacian.

(This is a huge improvement, as we will see empirically.)
1T. Kocák, et al., ”Spectral Bandits”, Journal of Machine Learning Research, 21 (1), Jan. 2020.
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New metric: AC regret
Limitations of traditional regret metric
• The traditional regret metric uses the linear power flow approximation

as the “ground truth” for the best voltage sampling strategy

• Robust theoretical guarantees (more on this later), but not a good empirical
metric due to lack of physical realism.

• The AC power flow (ACPF) provides a much more realistic model of the
power flow equations (non-linear).

In the power system setting we can define the (empirical) metric we term AC regret:

AC regret = E [Clairvoyant ACPF voltage sampling strategy − Your strategy]

Note: Involves solving a non-linear estimation problem... no guarantees
26/30
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Figure 4: Fixed power factor: Regret of the bandwidth-constrained maximal voltage risk
sampler vs. time with spectral (left) and ℓ2 (right) regularization.
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Additional empirical results for randomized control

We can relax the assumption on q = Kp, and let the entries of κi := Kii be random, e.g.,

κi ∼ Uniform(κi ,κi) i = 1, ... , n.

The following numerical results demonstrate that this works empirically, future work will
generalize this.
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Figure 5: Non-fixed power factor: Regret of the bandwidth-constrained maximal voltage risk
sampler vs. time with spectral (left) and ℓ2 (right) regularization.
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Thanks! Keep in touch: talkington@gatech.edu

This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-2039655. Any opinion,

findings, and conclusions or recommendations expressed in this material are those of the authors(s) and do not necessarily reflect the views of the National

Science Foundation.

Strategic distribution network sensing


	Grid model
	Uncertain linear power flow model
	Spectral bandit algorithm outline

