

School of Electrical and Computer Engineering

Embedding Affordability Goals into Grid Planning

via Differentiable Optimization

Samuel Talkington Georgia Tech

October 28, 2025 2025 INFORMS Annual Meeting

Introduction

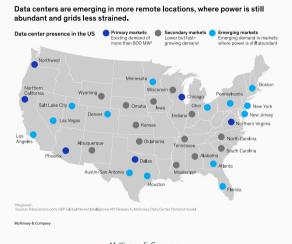
- Talk is based on joint work with:
 - Amanda West
 - Ryan Piansky
 - Rabab Haider
 - Daniel K. Molzahn

Energy affordability crisis i

MIT Sloan, "The changing geography of "energy poverty"

Pricing growth has unequal impacts.

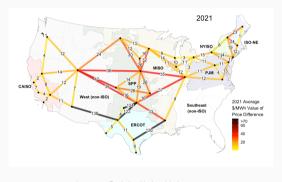
Embedding Affordability Goals into Grid Planning


- Average US electricity bills rose
 4.8% per year from 2019-2023^a
- 1 out of 3 US households
 reported forgoing basic necessities,
 such as food or medicine, to pay
 household energy bills in 2024^b
- US electricity consumer debt totaled \$21.1 billion as of September 2024.

^bU.S. Census Phase 4.2 Cycle 09 Household Pulse Survey: August 20 – September 16, 2024

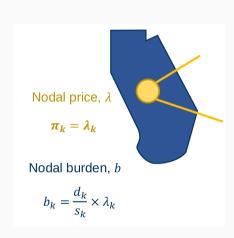
^aS. Forrester, et al. "Retail Electricity Price and Cost Trends," Lawrence Berkeley National Laboratory, 2024.

Rapid load growth dilemma i


- Vast numbers of new datacenters
- Grid planners of tomorrow:
 Stuck with combinatorial
 spaces
 - At what node(s) should we install a new datacenter?
 - To what line(s) should we interconnect?
 - etc...

McKinsey & Company

Rapid load growth dilemma ii


- Line congestion has an impact on our ability to:
 - integrate renewables
 - dispatch cheaper generators
 - meet demand
- This can impact consumer electricity costs.

Lawrence Berkeley National Laboratory

Prices and their impact

- Network structure→ electricity prices π(·);
 function of the locational marginal price
 (LMP) λ.
- LMP: the cost of serving an additional unit of load, constrained by network congestion and losses in the wholesale market.
- Energy burden: Fraction of income spent on energy (we'll focus on electricity)

The paradox of grid upgrades: Just one more line? i

Catch-22

- Unprecedented load growth
- Unprecented unaffordability
- Grid infrastructure has to adapt
- ...but how?

Credit: Getty Images/Futurism

The paradox of grid upgrades: Just one more line? ii

One approach (but not the only one):

Expanding transmission capacity

- Lower overall system costs √
- Lower emissions √
- Lower customer prices √
- ...but does it always?

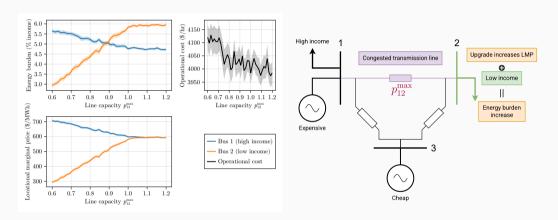
AC 2.4× transmission capacity \$270 billion net savings

Credit: Christopher Schwing, NREL

U.S. Department of Energy, Grid Deployment Office. 2024. The National Transmission Planning Study. Washington, D.C.: U.S. Department of Energy.


The paradox of grid upgrades: Just one more line? iii

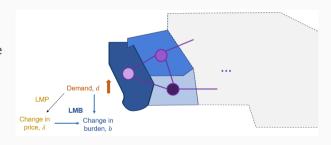
- Just like roads, water pipes, and arteries:
 Power grid transmission lines can become congested.
- Congestion has an increasingly large impact on electricity prices.



The paradox of grid upgrades: Just one more line? iv

- Just like roads, water pipes, and arteries:
 Power grid transmission lines can become congested.
- Congestion has an increasingly large impact on retail prices for electricity.
- Consumer costs:
 - typically reduce as congestion is reduced, but...
 - ...may counterintuitively rise[†] as a result of reducing congestion

[†]B. C. Lesieutre and J. H. Eto, "Electricity Transmission Congestion Costs: A Review of Recent Reports", Tech Rep. LBNL-54049, 2003.



Well-intentioned grid upgrades can cause unfair pricing impacts on consumers.

Locational marginal burden (LMB)

What is locational marginal burden?

- LMP: the cost of serving an additional unit of load, constrained by network congestion and losses in the wholesale market
- LMB: Analogous Concept, for *energy* burden, fraction of income spent on energy.

LMB as a Decision-Making Tool for Regulators

- Quantifies affordability in electricity pricing relative to grid infrastructure
- Evaluates affordability implications of grid investments and operations
- Enables data-driven regulatory decisions on infrastructure fairness

LMB bridges performance incentives and affordability goals

How do we measure affordability? i

Choices: Set of grid planning decisions \mathcal{U} , e.g.:

• Expansion planning: All possible ways to add q lines to an initial network configuration $s_0 \in \{0,1\}^m$:

$$\mathcal{U}_q(\mathbf{s}_0) = \left\{ \mathbf{s} \in \{0,1\}^m \ : \ \sum_{l \in F} s_l \leq q, \quad \text{and} \quad s_l = 1 \quad \forall l \in \text{supp}(\mathbf{s}_0)
ight\}.$$

ullet Load allocation: All ways to allocate a total of Δ MW of new load to an existing demand vector $m{d}_0$ (e.g., data centers)

$$\mathcal{U}_{\Delta}(\mathbf{d}_0) = \left\{ \mathbf{d} \in \mathbb{R}^n : \mathbf{d}_0 \leq \mathbf{d} \leq \mathbf{d}_0 + \Delta \mathbf{1}_n, \quad \text{and} \quad \sum_i d_i = \Delta + \sum_i d_{0,i}
ight\}$$

How do we measure affordability? ii

The energy burden function

Given **customer incomes** $s \in \mathbb{R}^n_+$, and grid parameters $u \in \mathcal{U}$, the *energy* burden function $b : \mathcal{U} \to [0,1]^n$ is

$$b = \operatorname{diag}(d \oslash s)\pi^*(u).$$

A node i is said to be suffering from energy poverty at a threshold t > 0 if $b_i > t$.

Responsible grid planning

Framework i

Find the best upgrades $u \in \mathcal{U}$ to minimize an energy insecurity function $E(\pi)$, where π is a vector of electricity prices that are an implicit function of the dual solution of an OPF problem, $\pi \in P(u)$, solved on the upgraded grid.

Responsible Grid Planning

Our algorithm solves the parametric mathematical optimization problem:

$$\min_{\boldsymbol{u}} E(\pi(\boldsymbol{u})) \qquad \text{subject to} \qquad \underbrace{\pi \in \mathcal{P}(\boldsymbol{u}), \quad \boldsymbol{u} \in \mathcal{U}}_{\text{energy pricing under grid upgrades}} \tag{1}$$

Example 1: Load allocation (Hawaii Network) i

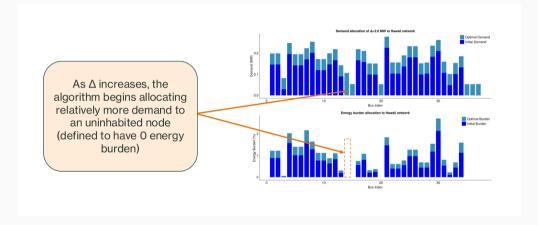
• Energy insecurity objective: Total (potentially thresholded) energy burden

$$E(\mathbf{u}; \boldsymbol{\pi}(\mathbf{u})) = \sum_{i=1}^{n} b_i(\mathbf{u}) = \sum_{i=1}^{n} \frac{d_i}{s_i} \cdot \boldsymbol{\pi}(\mathbf{u})$$

• Energy insecurity gradient: Sum of LMB matrix rows

$$\nabla_{\boldsymbol{u}} E(\boldsymbol{u}; \boldsymbol{\pi}(\boldsymbol{u})) = \sum_{i=1}^{n} \nabla b_{i}(\boldsymbol{u}) = (\mathsf{LMB}(\boldsymbol{u}))^{\mathsf{T}} \mathbf{1}.$$

Example 1: Load allocation (Hawaii Network) ii


$$\min_{oldsymbol{d}} E(\pi(oldsymbol{d}))$$
 s.t. $oldsymbol{d} \in \mathcal{U}_{\Delta}(oldsymbol{d}_0),$ $\underline{\pi(oldsymbol{d}) \in \mathcal{P}(oldsymbol{d})}_{ ext{dual solution of DC OPF}}$

Key idea:

Improve energy insecurity by allocating new demand in **the right locations**.

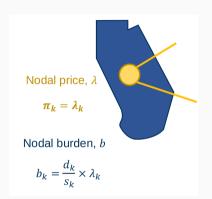
$$\mathcal{U}_{\Delta}(\boldsymbol{d}_0) = \{ \boldsymbol{d} \in \mathbb{R}^n \ : \ \boldsymbol{d}_0 \leq \boldsymbol{d} \leq \boldsymbol{d}_0 + \Delta \boldsymbol{1}_n, \quad \text{and} \quad \sum_i d_i = \Delta + \sum_i d_{0,i} \} \,.$$

Example 1: Load allocation (Hawaii Network) iii

Example 2: Expansion planning i

$$\min_{\boldsymbol{u} \in \{0,1\}^m} E(\boldsymbol{u})$$
 power flow eqns. expansion budget $(||\boldsymbol{u}||_1 \leq q)$ initial lines $(s_e = 1 \ \forall e \in S_0)$

Key idea:


Improve energy insecurity by adding the right lines.

Conclusion

- Introduced LMB, sensitivity of energy insecurity to grid parameters.
- Operationalize decision making for policymakers, grid planners, etc.
- Admits fast, trustworthy algorithms for affordability-aware grid planning.

Thank you

This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-2039655. Any opinion, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National

Science Foundation