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Problem setup

¥ Notation
o ji= v

lnxn N X nidentity matrix

1, n-dimensional vector of all ones

W= [W,,-] (if)e€ network parameters; graph edge weights

A € {0, £1}™*" edge-to-node incidence matrix

diag(:) diagonal matrix with the argument as entries

{-} o{-} elementwise multiplication of two vectors.




Admittance matrix

The admittance matrix Y := G+ jB € C"™ " is a generalization of the weighted graph

Laplacian matrix. It is a complex, symmetric, but not necessarily Hermitian matrix, and
its entries take the form

i Wi =k
= § it g ()

— Wik otherwise,
or equivalently,

(gii + Z/;éigi/) +]j (bii + Z/ﬁ b,‘/) i=k

—8ik — jbi otherwise.

Gik + jBik =
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Power flow equations

The power flow equations are a non-linear system of equations that describe Kirchhoff's
current and voltage laws jointly. This system of equations is written as

s:=p+]jq=diag(u)Yu, 3)

where {-} is the complex conjugate, u € C" are the bus voltage phasors and Y € C"*"
is the admittance matrix.

Much ink has been spilled over solving these equations efficiently.
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Constructing the power flow manifold

- The power flow manifold N

Define the network state in R*" as

X = {VT 0" p' qT}T; (4)

the power flow equations define a nonlinear operator F : R*" — R?", where

Re {diag (u) Yu—s
Im {diag (u) Yu — s}
with u:= v o exp {j@} as the voltage phasors and s := p + jq as the complex

power injections. The power flow manifold is then

L M= {xeR“";f(x):ozn}. (6))




Linearized power flow manifold

The linear manifold tangent to M at a nominal operating point X, is given by

M, = {x € RY : F(xa) (X — xo) = 02n}, 7)
where
oF . .
F(xa) = 5-(x) = | %f(x.) 97 (x) %%<x.) % (x.)] (8a)
_ (u)} R ue)} —loxn  Onxn
- lm{ @} m {5 ()} O —u,,x,,] o)
(% (uy) 2B(us) I 0
_ v ° 00 nxn nxn
B gz(uo) #( ) Onxn  —lnxn e

Linear power flow model



Flat start linearization

- Linearization of the power flow manifold [1, 2, 3] ~

Consider the flat start condition u, := 1+ j0O, and suppose that w = 0 + jO.
Then, the linear power flow manifold around u, is

M, = {x e RY . F(x)(x — x4) = 02,,} , 9)
where
G —-B —lxn Onxn
F(x,) = , (10)
O [—B —G  Opn —lnxn
or equivalently,
|p=Ge—BA, and q——Be—Go,] (1)

where € := v — 1.

\. J




Flat start linearization, part 1

Let w := v + jB € C" denote the vector of self-admittances of each node. Then,
following [5, 5.10]

g (1) = idisg (u) (ding (Yus) — ¥ ding (us)
= jlaxn (diag (l’h) - Xlnxn)
= j (diag (w) — Y)

and

O 103) = ey () P () < s () e

ov
= In><r1 (diag (Z‘Iﬂ) + XIHX”) I;;n
=diag (w) + Y
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Flat start linearization, part 2

We have that
op o Os
20 (uy) := Re{&9 (u*)}

= Re{j (diag (w) — Y)}
= Re{j(diag (v —iB) — (G- jB))}
= Re{jdiag(v) + diag(3) — jG — B}
= diag(B3) — B,

and

9p (uy) := Re {diag (w) + Y}

ov
= Re{diag (v — jB) + G — jB}
= diag () + G.
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Flat start linearization, part 3

Similarly,
0
S-S}
— Im {j (diag () — )}
= Im {jdiag(v) + diag(8) — jG — B}
= diag (v) — G
and

9q

5y (us) = Im {diag (@) + Y}

= Im {diag (v — jB3) + G — jB}
= —diag(B) — B
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Applying the assumption that 3 = « = 0 and plugging into (8) yields the desired result:

F(X ) _ G _B _|n><n 0n><n (12)
) —B —G Opxn  —loxn|
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Inverse model for tree networks

Remark: Model inversion

In the special case of radial (tree) networks, i.e., the practically relevant setting

of small-scale distribution networks (the main application setting of interest), a
reduced form of the linear model (11) can be inverted in closed form.
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Trees only

Figure 1: Hereafter, everything only works for tree networks



Reduced incidence matrix

With an abuse of notation, for a tree network with n lines and n non-reference nodes,
N :={0,1,...,n}, let A € {0, £1}"*" be the reduced incidence matrix formed by
removing the first column of the full incidence matrix, which we now denote as

A, = [ao A} e {0, £1)™X(n ) (13)

It is known that the reduced incidence matrix A is square and invertible [4].
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Reduced Laplacian matrices

With another abuse of notation, keep the same formula for the admittance matrix Y,
Y := A" diag(w)A = A" diag(g)A + jA' diag(b)A, (14)
and define the following reduced graph Laplacian matrices:
G :=Re{Y} = ATdiag(g)A, and B:=Im{Y} = ATdiag(b)A (15)

where A is now the reduced incidence matrix.

Now the inverse of Y, the impedance matrix, can be computed as

Y~ '= A ldiag(w)'A" T = R+ jX. (16)
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Intuitive explanation

Recall that for any complex number ¢, (7' = ¢/ |¢|%. Hence, the impedances can be
expressed as inverse admittances (graph weights):

_1 . 8ii . —bj .
wi =i = s s V(i) €&, (17)
' g thj "&b
—_——  ——

::r,/ Z:X,'/'
thus, define the matrices

R=A"diag(r)A™T, X :=A'diag(x)A".
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Inverse model for tree networks

r Inverse model for tree networks ~N

Consider a tree network with n non-reference nodes and n edges. Then,

-1
G -B R X
= : (18)
-B - X —R
where
R = A""diag(r)A T,
X := A ' diag(x)A".
and thus

e=Rp+Xq, and 6 =Xp—Rg, (19)

where € := v — 1.

. J




Inverting the model for trees

We want to invert the system of equations

Al

Note that as G > 0, both Schur complements of the above matrix exist, and hence

€

ol (20)

G —B] - ~ _(GJrBG”B)_1 O [| —BG1]
-B -G | O —(G+BG_1B)71 BG™ s
- | (G+BG’1B)71 - <G+BG*1B)71 BG™'
N - (G+BG’1B)71 BG' - (G+BG’1B)4
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Inverting the model for trees

To begin, the first matrix we need to compute is

—1 —1
(G + BG”B) - (AT diag(g)A + AT diag(b)AA~" diag(g)~'A"TAT diag(b)A)

;b
= | AT diag Bi T -
i ic€
= A7 ding | | 55 AT
gl/+ ij iic&
= A 'diag(r)A™"
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Inverting the model for trees

Finally, the second matrix we need to compute is

8ij
2 2
i b//

-1
_ (G 4 BG™ B) BG' = —A 'diag [ ] A~TAT diag(b)AA" diag(g) AT
€&

_ a1 g U T
i ™ Piliee

= A diag (x) AT
=X
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The matrices of the inverted model

Then, the matrix inverse we have obtained is

-1
G -B R X
— (21)
-B -G X —R
and thus
€l _ R X | |p , 22)
0 X —R| |q
as desired.
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