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Project Background

The proliferation of smart meters is a pivotal opportunity to increase electric distribution

network visibility, reaching 107 million units in the US in 2021 [1].

Bandwidth limitations pose a significant challenge for real-time monitoring purposes, especially

when limited bandwidth is shared by many smart meters.

New smart meters can be dynamically queried, and their precision can be controlled remotely via

two-way communication [2]. Variable subsets of the meters can report data at high frequencies.

By strategically tuning these parameters, we can use these measurements to efficiently and

accurately learn an unknown grid’s topology [3] and perform state estimation [4].
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Figure 1. Quantization techniques assign continuous measurements to discrete buckets to improve computation and

communication efficiency [5]. Each bucket’s size is defined by the quantization width ∆ > 0.

Project Objectives and Contributions

Objectives:

Quantify the error of a broad class of state estimation problems in power systems.

Quantify the impact of variable precision in smart meter measurements on estimation and

control tasks.

Dynamically identify smart meters to query with objectives such as revealing violations of

voltage magnitude limits and improving state estimation accuracy.

Contributions:

An efficient topology learning algorithm that is robust to the probability distributions of the

smart meter measurements.

Probabilistic bounds on the accuracy of the estimated topology by the algorithm. This is

achieved by developing concentration inequalities for the smart meter measurements under

quantization effects.

Measurement sampling prescriptions to ensure a desired error. This prescription depends on

the quantization rates chosen for the meters.

Research Approach

Problem description: We consider an estimation problem with quantized linear measurements:

y = Q (Hx) , (1)

where H ∈ Rm×n is a sensing matrix, x ∈ Rn is a grid signal we wish to estimate, and Q(·) is a
non-linear quantization function.

Example measurement model: Assume that each yi is a uniformly dithered quantized measurement

with quantization width ∆ > 0; this means that each yi takes the form

yi = Q (〈hi, x〉) = ∆
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. Then, we can reformulate y as a linear measurement model:

y = Hx + z, (3)

where z ∼ subGn(∆) is a sub-Gaussian noise vector [6,7].
Convex Estimation Problem: We consider a generalized constrained estimation problem:

x̂ = arg min
x∈K

1
2m

m∑
i=1

(〈hi, x〉 − yi)2 , (4)

where K ⊂ Rn is a convex set of interest that encodes known structure of the state.

Example: Topology Recovery

Task: Learn a n-node distribution network topology x0 from m smart meter measurements.

How is the 
network 

connected?

What tree 
best explains 

the data?

Figure 2. Topology learning problem: Ensuring grid model accuracy with smart meter measurements.

Suppose that the m smart meter measurements have quantization width ∆ > 0. Provided that
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n, (5)

then the topology estimate from solving (4) with an appropriate choice of K obtains an error

bounded, with exponentially high probability, as
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Key idea: This error bound is better than what we could hope to achieve in general for a meshed

system, because we are leveraging the sparse structure of x0 that arises in radial networks.

Numerical Results
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Figure 3. Relative error vs. number of measurements for learning the topology of the case33bw test network with the
convex program (4), by quantization width. The leftmost pane is experimental results, while the rightmost pane
shows the error prescribed by (6), which accurately predicts the performance of the algorithm.

Conclusion and FutureWork

The key findings are an efficient method and error bounds for learning a distribution network

topology. The method is robust to a generic class of non-Gaussian measurement noise, and

supports variable precision in the measurements. By embedding the tree structure of distribution

networks into the estimation problem, we show that the proposedmethod gives precise predictions

of the grid topology. Non-asymptotic error bounds allow for the performance of the algorithm to

be predicted without requiring an optimization problem to be solved.
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