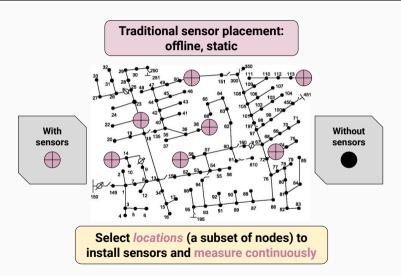
High-dimensional statistics for electric power systems

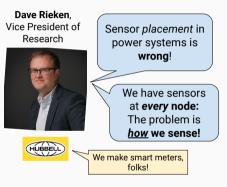
Samuel Talkington Ph.D. Student, Georgia Tech ECE Al4OPT 3MT Competition

April 1, 2025

My background

I'm a native of central West Virginia, a cornerstone of our nation's energy infrastructure.


My great-grandfather, an electrician, helped electrify Appalachia.

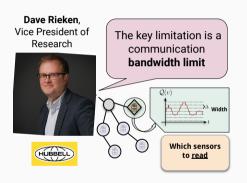

Motivation: What node in a network is most probable to have a constraint violation?

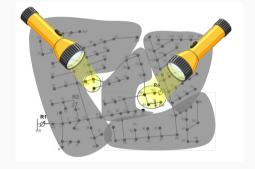
...Under mild assumptions, and given realistic parameters...

Previous work

Motivation

70% of North American households have smart meters, EIA, 2020.


Here's an algorithm that selects sensor locations


Samuel Talkington

High-dimensional statistics for electric power systems

Sensor placement-or sampling? Rethinking sensor placement.



70% of North American households have smart meters, EIA, 2020.

The problem

- Power distribution networks have high levels of sensors already, but with...
- Limited communication bandwidth.
- How do we dynamically monitor these sensor networks efficiently?
- i.e., how to move these flashlights around?

Select only a few sensors

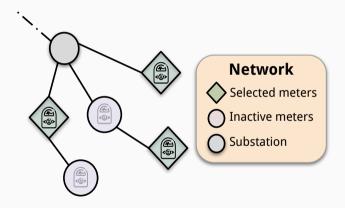
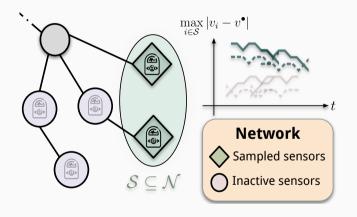



Figure 4: Key idea: we can only select a few sensors

Select S, find worst case in S

Figure 5: From S, what's the **worst case** voltage?

Strategy

At each time *t*: the learner picks *b* nodes to **check the security**.

The set of all strategies is the **set of all subsets of** *b* **nodes**.

$$\mathcal{A} = \left\{ \mathcal{S} \in 2^{\mathcal{N}} : |\mathcal{S}| \le b \right\},\tag{7}$$

so there are $|A| = \binom{n}{b}$ possible strategies...challenging in general!

Reward

When the learner has selected sensors $S_t \in A$ to ping, she observes a reward $f: A \to \mathbb{R}$ that looks like

$$f(S) =$$
Worst case voltage in S . (8)

In symbols:

$$f(\mathcal{S}) = \max_{i \in \mathcal{S}_t} |\epsilon_i| = \max_{i \in \mathcal{S}_t} |v_i - 1| = \max_{i \in \mathcal{S}_t} |\langle \mathbf{w}_i, \mathbf{\psi} \rangle|. \tag{9}$$

This reward is the maximum voltage magnitude observed in the sampling strategy.

How to optimize sensor sampling: A bandit approach

To pick the best *m*-sample strategy, minimize the **regret**:

 $R_m := \mathsf{E}\left[\mathsf{Best} \; \mathsf{voltage} \; \mathsf{sampling} \; \mathsf{strategy} - \mathsf{Your} \; \mathsf{voltage} \; \mathsf{sampling} \; \mathsf{strategy}\right]$

Intuition: Iteratively track extreme voltages based on feedback.

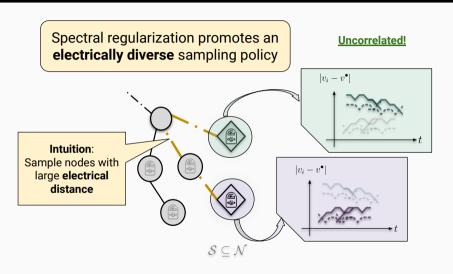
Spectral bandit algorithm

Solution approach: At each timestep t, recursively compute an estimate of the *Fourier coefficients* ψ for the voltage magnitudes v:

$$\hat{\boldsymbol{\psi}}_{t} = \arg\min_{\boldsymbol{\psi} \in \mathbb{R}^{n}} \sum_{s=1}^{t-1} (v_{s} - \langle \boldsymbol{w}_{s}, \boldsymbol{\psi} \rangle)^{2} + \beta ||\boldsymbol{\psi}||_{\boldsymbol{\Lambda}}^{2},$$
 (10)

where $\beta > 0$ is a regularization parameter that you choose. The indices s = 1, ..., t-1 are the sampled nodes!

Spectral regularization


The regularization term, $||\psi||_{\pmb{\Lambda}}$, promotes predictions of the voltages that are electrically diverse:

$$||\psi||_{\mathbf{\Lambda}} := \sqrt{\psi^{\mathsf{T}} \mathbf{\Lambda} \psi} = \sqrt{\sum_{(i,j) \in \mathcal{E}} y_{ij} (\psi_i - \psi_j)^2}.$$
 (11)

This is also known as the Dirichlet energy of the graph.

Relates to effective resistance...check out the paper for more information

Intuition of spectral regularization

Key take-away

Question: Why is this an improvement?

Answer: The worst case *m*-sample regret with conventional linear bandits is

$$R_m \leq \tilde{O}(n\sqrt{m}),$$

where n is the number of nodes. Our result, by incorporating the graphical structure¹ of the power flow equations, yields

$$R_m \leq \tilde{O}(\frac{d}{\sqrt{m}}).$$

This reduces the scaling factor to the *intrinsic dimension*, d < n, of the graph Laplacian.

(This is a huge improvement, as we will see empirically.)

¹T. Kocák, et al., "Spectral Bandits", Journal of Machine Learning Research, 21 (1), Jan. 2020.

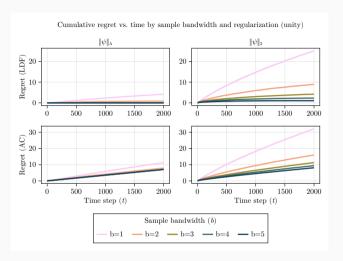


Figure 6: Fixed power factor: Regret of the bandwidth-constrained maximal voltage risk sampler vs. time with spectral (left) and ℓ_2 (right) regularization.

Thanks! Keep in touch: talkington@gatech.edu

This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-2039655.

Any opinion, findings, and conclusions or recommendations expressed in this material are those of the authors(s) and do not necessarily reflect the views of the National Science Foundation.