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Error Bounds for Radial Network Topology Learning
from Quantized Measurements

Samuel Talkington⋆, Aditya Rangarajan♯, Pedro A. Alcântara†, Line Roald♯, Daniel K. Molzahn⋆, Daniel R. Fuhrmann†

Abstract—We probabilistically bound the error of a solution to a
radial network topology learning problem where both connectivity
and line parameters are estimated. In our model, data errors
are introduced by the precision of the sensors, i.e., quantization.
This produces a nonlinear measurement model that embeds the
operation of the sensor communication network into the learning
problem, expanding beyond the additive noise models typically
seen in power system estimation algorithms. We show that the
error of a learned radial network topology is proportional to
the quantization bin width and grows sublinearly in the number
of nodes, provided that the number of samples per node is
logarithmic in the number of nodes.

I. INTRODUCTION

Efficiently allocating limited smart meter bandwidth is an
emerging challenge at the intersection of power and com-
munication engineering [1], [2]. As smart meters proliferate,
power engineers will increasingly rely on analog-to-digital
quantization methods to improve computational and commu-
nication efficiency by mapping continuous measurements to
discrete intervals [3]; see Fig. 1 (left). While coarse quantization
accelerates computations [4], it introduces nonlinear, typically
non-Gaussian, measurement noise [5], [6], contrasting with
the additive Gaussian assumptions common in power system
estimation.

To help address these challenges, we present a new sample
complexity analysis method for distribution topology learning,
a well-studied inference task in power engineering; see [7]
for a comprehensive review. Sample complexity refers to the
number of measurements needed to ensure that the error of
an estimated parameter is bounded by a chosen tolerance [8].
In particular, this work provides such topology learning error
bounds under the effects of practically relevant communication
non-idealities.

To the knowledge of the authors, these contributions are the
first of their kind and expand on recent deterministic studies of
measurement requirements for topology learning [9]. Obtaining
guaranteed bounds on the error of a learned distribution network
topology is valuable from two perspectives: 1.) in theory, as
they quantify the fundamental limits on the performance of a
topology learning algorithm, and 2.) in practice, as they quantify
the amount of measurements needed to obtain the desired error.

⋆: School of Electrical and Computer Engineering, Georgia Institute of
Technology, Atlanta, GA, USA. Email: {talkington,molzahn}@gatech.edu.

♯: Department of Electrical and Computer Engineering, UW Madison, WI,
USA. Email: {arangarajan4, roald}@wisc.edu.
†: Department of Applied Computing, Michigan Technological University,

Houghton, MI, USA. Email: {paquinod,fuhrmann}@mtu.edu.
The authors gratefully acknowledge funding from PSERC project T-67:

Smart Meter-Driven Distribution Grid Visibility and Control. The work of S.
Talkington is supported by the National Science Foundation Graduate Research
Fellowship Program under Grant No. DGE-1650044. Any opinions, findings,
and conclusions or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the National Science
Foundation.

Quantized 
Measurements

Bin 
Width

How is the 
network 

connected?

What tree 
best explains 

the data?

Fig. 1. Conceptual illustration of the proposed problem. Left: Distribution
network smart meter measurements have realistic quantization noise corre-
sponding to bin width ∆ > 0. Right: Estimate the topology and parameters
of the distribution network (green, solid lines).

The latter of these two benefits is particularly valuable in
the quantized measurement regime, as the error bounds link
the operation of the sensor communication network, i.e., the
quantization bin width, with the performance of a downstream
topology learning algorithm.

Therefore, to address these aims, this letter answers the
following concrete question:

Consider an n-node distribution network with un-
known topology (connectivity and parameters). Sup-
pose that we collect measurements at every node with
a uniform quantization bin width ∆ > 0. How many
samples per node s = m/n are needed to recover the
topology of the network from the m = sn quantized
measurements, up to a desired error tolerance?

This research question is illustrated in Fig. 1 (right), outlined in
Section II. We give a precise answer in Section III by providing
a bound on the error of a topology estimate given a prescribed
number of measurements.

II. PROBLEM FORMULATION

A. Communication model

We wish to recover an unknown vector of line parame-
ters w⋆ ∈ Rd from m ≥ d quantized measurements of the
form

pi ≜ Q(⟨ai,w⋆⟩), i = 1, . . . ,m, (1)

where Q : R → R is a nonlinear quantization function
and (pi,ai), i = 1, . . . ,m are measurements collected from
smart meters (both spatially and temporally). Vectors {ai} are
rows of a particular sensing matrix A ∈ Rm×d and contain
pairwise voltage differences measured co-temporally with active
power injection pi. We will define matrix A explicitly in
Section III-A as a consequence of linearizing the power flow
equations. In the same way, we will argue that the sparsity
pattern of w⋆ represents the network topology (cf. [7, Sec.
IV-B]).

Specifically, we focus on the setting in which coarsely
quantized measurements (1) are generated from a uniformly
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dithered quantization function (cf. [3], [6]) with bin width
∆ > 0. These measurements take the form

pi = ∆ ·
(⌊
⟨ai,w⋆⟩+ τi

∆

⌋
+

1

2

)
i = 1, . . . ,m, (2)

where τi ∼ Uniform
(
−∆

2 ,
∆
2

)
, and E [pi |ai] = ⟨ai,w⋆⟩,

i.e., pi is unbiased, conditional on ai. The dither τi is a
purposely applied random noise component that is generated
by a sensor and added to an input signal prior to quantization.
This technique is fairly well-established and commonly used
by sensors in practice, and by statisticians in theory; see [10],
[3]. Without dithering, uniform quantization yields a different
nonlinear observation model (cf. [5]) with signal-dependent
distortion, in which case, the conditional unbiasedness property
described above may not hold.

B. Statistical tools

Suppose that w⋆ lies in a convex constraint set K ⊆ Rd that
encodes some sort of known structure of the parameter w⋆,
e.g., knowledge of where certain lines are located (but not their
switching status), or whether the network is operated radially.
We can solve for a constrained estimate ŵ ∈ Rd that obeys
this structure via the program (3), known as the generalized
LASSO:

ŵ = arg min
w∈K

1

2m

m∑
i=1

(⟨ai,w⟩ − pi)
2
. (3)

The quality of the estimate produced by the program (3) can
be quantified with a statistical tool known as the Gaussian
width. We introduce this tool briefly and refer the reader to
[11], [12, Ch. 7.5] and [5], [6] for further technical information.
Formally, the Gaussian width ω(T ) of a set T ⊆ Rd is defined
as

ω(T ) ≜ E

[
sup
u∈T
⟨u, g⟩

]
, (4)

where g ∼ N (0, I) is a vector of i.i.d. standard Gaussians. The
Gaussian width ω is a useful tool for predicting the behavior
of structured convex problems with random input data [11]. It
represents the “size” of a standard Gaussian process over T ,
which we can use as a stochastic comparison for our structured
problem. Two classic examples of structured constraint sets
with well-behaved Gaussian widths are sparse and low-rank
constraint sets [11].

The squared Gaussian width, ω2(T ), provides a measure of
the effective dimension of the set T ; informally, this represents
the minimum number of orthogonal directions required to
capture the variation or structure within T . We will also need
another object for our analysis—the tangent cone of a set
K ⊂ Rd at x ∈ Rd, which is defined as

D(K,x) ≜ {λu : λ ≥ 0, u ∈ K − x} , (5)

where K − x is the set K translated by x. The tangent cone
(5) generalizes the idea of the tangent space to a nonlinear
surface that may have non-differentiable points.

C. Network and power flow model

The abstract quantities in (1) and (2) can be applied to the
Linear Coupled Power Flow (LCPF) model [7], [13]. As the

focus of this work is on sample complexity, we make the
following simplifying assumption on the reactive power.

Assumption 1 (Fixed power factor). Let p ∈ Rn be active
power injections. Assume that reactive power injections satisfy
q = κp, where κ ∈ R is a known constant.

Assumption 1 is equivalent to defining a fixed power factor
ϕ ∈ (0, 1] such that κ = ±ϕ−1

√
1− ϕ2, where sign(κ) = 1 if

the injections are inductive and sign(κ) = −1 if the injections
are capacitive. For more information on the consequences of
this assumption, see [14], [15].

If Assumption 1 does not hold, the best path to separate
the contribution of active and reactive power to the voltage
magnitude measurements depends on the assumption chosen
instead. For instance, if complete knowledge of active and
reactive power measurements are available, one could use a
moment method as described in [7, (16-17)]. Alternatively, one
could consider various blind signal decomposition procedures
to disaggregate the contributions, e.g., see [16]. Our choice of
measurement model is equivalent to [7, (21)].

1) Linear Coupled Power Flow (LCPF) model: For a radial
network with n + 1 nodes, let C ∈ {−1, 0, 1}n×n be the
invertible, reduced, branch-to-node incidence matrix of a tree
graph with the column corresponding to the slack node removed.
Let {(vt,pt)}

m
t=1 be a sequence of nodal voltage magnitude

and active power measurements. Under Assumption 1, the
voltage magnitudes satisfy [7], [13]:

vt − 1 = (R+X · κ)pt, t = 1, . . . ,m (6)

where R +Xκ ≜ Z is the (reduced) equivalent impedance
matrix. We can write Z as the inverse of a real-valued
equivalent admittance matrix Y ∈ Rn×n, where

Z = C−1 diag (r + κx)C−⊤ ≜ Y −1, (7)

where z ≜ r + κx ∈ Rn are the line impedances (scaled).
The matrix C−1 ∈ {−1, 0}n×n is a lower triangular matrix
where the non-zero entries of each column j represent the
descendants of node j in the tree. In particular, over the indices
i, j = 1, . . . , n, we have

(
C−1

)
ij

= −1 if i = j or i is a
descendant of j, and

(
C−1

)
ij
= 0 otherwise.

2) Lifting to the complete graph: Echoing [9], we can
view the problem of recovering w⋆ as sparsifying a complete
undirected graph Kn+1 with n + 1 nodes and

(
n+1
2

)
lines.

Accordingly, let Ỹ (·) be the admittance matrix operator that
sends line parameters w ∈ R(

n+1
2 ) to a corresponding (non-

reduced) (n+ 1)× (n+ 1) admittance matrix:

Ỹ (w) = C̃
⊤
diag(w)C̃ =

n∑
i=1

n∑
j=i+1

Eijwij . (8)

Here, Eij ≜ (ei − ej) (ei − ej)
⊤ is an elementary Laplacian

matrix, where ei is the i-th standard basis vector in Rn+1. The
matrix C̃ ∈ {−1, 0, 1}(

n+1
2 )×n+1 is the incidence matrix that

corresponds to a complete graph. We can now represent the set
of all radial networks as the set of all line parameter vectors
w that correspond to a connected radial network with n+ 1
nodes. This set takes the form

R =
{
w ∈ R(

n+1
2 ) : ||w||0 = n, λ2(Ỹ (w)) > 0

}
. (9)
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The sparsity condition ||w||0 = n ensures n lines, and the
condition on the second smallest eigenvalue λ2(Ỹ (w)) > 0
means the graph is connected, i.e., x⊤Ỹ (w)x > 0 for all x ⊥
1. The constraint set (9) is intractable; however, in Section III-A
we provide a relaxation that performs well both experimentally
and theoretically. Hereafter, we implicitly remove the slack
node column of C̃ in our calculations, and refer to the network
as having n nodes.

III. MAIN RESULT

A. Topology learning problem

Let P ,V ∈ Rn×s be data matrices whose columns are s
samples of active power and voltage magnitude measurement
vectors, respectively, across all n nodes. We seek to recover
an n-sparse vector w⋆ of line parameters, where w⋆,i = 1/z⋆,i
if z⋆,i ̸= 0, and 0 otherwise. This problem can be written as a
sparse recovery problem over the complete graph by defining
the measurement system

p = Q (vec (P )) = Q (Aw⋆) , p ∈ Rsn. (10)

The sn×
(
n+1
2

)
sensing matrix is A ≜ V ⊤C̃

⊤
⊙C̃

⊤
, where ⊙

is the Khatri-Rao matrix product.

B. Bounding the error of the parameter estimate

Taking advantage of the sparsity, we can characterize the
Gaussian width of the tree set (9).

Lemma 1. Define the set TR,w⋆
≜ D(R,w⋆) ∩ Sd−1 as the

intersection of the tangent cone (5) of constraint set R with
the unit shell Sd−1 ≜

{
u ∈ Rd : ||u||2 = 1

}
, d =

(
n+1
2

)
.

The squared Gaussian width of the set of radial networks (9)
satisfies ω2 (TR,w⋆

) ≤ 2n log
(
n+1
2

)
+ 3

2n.

Proof. The ground truth w⋆ corresponds to a spanning tree
of the complete graph with n+ 1 nodes. Since this tree must
have n edges, vector w⋆ must be n-sparse, i.e., ||w⋆||0 = n.
Dropping connectivity, define the relaxation K ⊇ R as

K ≜
{
w ∈ R(

n+1
2 ) : ||w||1 ≤ ||w⋆||1

}
, (11)

i.e., the ℓ1-norm ball of radius ||w⋆||1. It is well known (cf. [11],
[6]) that, as w⋆ is n-sparse, we can conclude that ω2(TR,w⋆) ≤
ω2(TK,w⋆) ≤ 2n log(n+1

2 ) + 3
2n.

Using Lemma 1, the error of the topology learned by (3)
with constraint set (11) and bin width ∆ > 0 is bounded and
can be quantified.

Theorem 1. Suppose that s = m
n samples with bin width

∆ > 0 are collected throughout an n-node distribution network,
and suppose that the {ai} are any i.i.d. sub-Gaussian random
vectors. Then, there exist constants C, c1, c2 > 0 such that the
error of the topology estimate from solving (3), with probability
at least 0.99 (i.e., 99%) is bounded as

||ŵ −w⋆||2 ≤ C∆ ·

√
2 log

(
n+1
2

)
+ 3/2

s
, (12)

provided the number of samples s ≥ O(log n).
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Fig. 2. Relative error vs. number of samples for repeated runs of the topology
learning program (3) on the Baran & Wu (left) and CIGRE low-voltage (right)
test cases. The scatter markers show the experimental error obtained for one
run of (3), where each color corresponds to a bin width ∆. The solid lines
show the error prescribed by (12).

Proof. Combining Lemma 1 with (13) and applying [6, Thm.
III.1], there exists a constant C > 0 such that the minimizer
ŵ of the program (3) satisfies, with probability at least 0.99,

||ŵ −w⋆||2 ≤ C∆ · ω (TK,w⋆
)√

m
, (13a)

≤ C∆ ·

√
2�n log(n+1

2 ) + 3
2�n

s�n
, (13b)

provided the total number of measurements m = sn ≥
c1ω

2 (TK,w⋆
) + c2 for some absolute constants c1, c2 > 0.

Due to Lemma 1, if the number of samples per node
s ≥ c1(2 log

(
n+1
2

)
+ 3/2) + c2 = O(log n) we satisfy this

measurement requirement.

C. Numerical results

Fig. 2 compares the error bound (12) with the parameter
error obtained by numerically solving many instances of the
program (3). The errors are plotted against the number of
samples per node, varied over 100 discrete uniformly spaced
points 10 ≤ s ≤ 800. For each instance of the program (3), a
random matrix V ∈ Rn×s of independent Gaussian voltages is
generated, where the mean of each column is the AC power flow
solution of the feeder, and the variance of each column entry
is 10% thereof. Active power measurements are then generated
as in (10). This Gaussian choice is purely for convenience;
Theorem 1 only requires sub-Gaussian sensing vectors, so any
other light-tailed perturbation models for V are covered by
the same analysis. The quantization bin width ∆ is varied as
a percentage of the sample mean of the absolute active power
injections 1

m ||Aw⋆||1. The solid curves in Fig. 2 depict the
error bounds given by (12), for each bin width ∆.

Following [6], the constant C is not specified by the
theorem. Therefore, we numerically select C for each feeder by
computing the maximum ratio of empirical errors and (12) over
all s,∆. Concretely, defining B(s,∆) := ∆

√
2 log(n+1/2)+3/2/s,

we calibrate the constant C ← Cfit a posteriori as

Cfit := max
s,∆

||ŵ(s,∆)−w⋆||
B(s,∆)

, (14)
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where ŵ(s,∆) is the topology learned by the program (3) under
sample and quantization parameters s,∆. We found C ≈ 13
for case33bw and C ≈ 10 for casecigreLV, which we
use for the solid curves in Fig. 2. The scaling O(∆

√
logn/s)

predicted by (12) matches the experimental errors across all
quantization bin widths ∆.

IV. CONCLUSION

We provided a framework to predict the error of a learned
distribution network topology—before solving any optimization
problem. By exploiting the radial structure, we achieved an
error sublinear in the number of nodes, up to constant factors
determined by the precision of the sensor and the underlying
probability distributions. Formally, we showed that the topology
and line parameters of a radial network can be recovered up to
a relative error of O(∆

√
logn/s), given a collection of O(log n)

samples from every node with quantization bin width ∆ > 0.
Before collecting data, the bound (13) can be used to size
quantization and sampling budgets to hit a target topology
error. Note that (13) is determined by the bin width ∆. Bounds
involving communication bit rates would require assumptions
on the variance of the underlying measurements.
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